一、分布式事务
事务指的是一组操作,要么全部成功,要么全部失败。事务有四个特性ACID,具体涵义参考数据库原理这篇博客
本地事务可依赖数据库本身提供的事务特性来实现,因此以下逻辑可以控制本地事务:
begin transaction;
//1.本地数据库操作:张三减少金额
//2.本地数据库操作:李四增加金额
commit transation;
但是在分布式环境下,会变成下边这样:
begin transaction;
//1.本地数据库操作:张三减少金额
//2.远程调用:让李四增加金额
commit transation;
可以设想,当远程调用让李四增加金额成功了,由于网络问题远程调用并没有返回,此时本地事务提交失败就回滚了张三减少金额的操作,此时张三和李四的数据就不一致了。
因此在分布式架构的基础上,传统数据库事务就无法使用了,张三和李四的账户不在一个数据库中甚至不在一个应用系统里,实现转账事务需要通过远程调用,由于网络问题就会导致分布式事务问题。
二、分布式事务的解决方案
1. 全局事务
(1)DTP模型
DTP模型规定了要实现分布式事务的体系结构,包含多个协议、算法和机制等,以确保分布式环境下的事务能够以一致和可靠的方式执行。
DTP主要侧重于业务实现分布式事务时的体系结构,而后面介绍的2PC和3PC则侧重于实现的逻辑,相当于DTP是壳,而2PC/3PC等协议是核。
举个例子,在通信的场景下,DTP的作用相当于定义了通信中需要有发送方和接受方,要求这两方都需要有发送和接收的能力,要求通过一系列的通信方式使得他们能正常通话。而2PC/3PC则是相当于定义了具体的通信逻辑,比如TCP三次握手和IP协议等等。
(2) 两阶段提交协议(2PC)
原理
两阶段提交又称 2PC,是一个非常经典的强一致、中心化的原子提交协议。两阶段提交协议经常用来实现分布式事务。
2PC协议中,节点分为两种角色
- 准备阶段(Prepare phase):事务协调者给每个参与者发送Prepare消息,每个参与者要么直接返回失败(如权限验证失败),要么在本地执行事务操作(如写本地的redo和undo日志),但不提交,到达一种“万事俱备,只欠东风”的状态
- 提交阶段(commit phase):根据不同的情况做出相应的操作
二阶段提交的缺点
- 性能问题:执行过程中,所有参与节点都是事务阻塞型的。当参与者占有公共资源时,其他第三方节点访问公共资源不得不处于阻塞状态。也就是说从投票阶段到提交阶段完成这段时间,资源是被锁住的,对性能影响比较大。
- 单点故障:主要指协调者发生故障,这种情况下参与者会一直阻塞下去,尤其在第二阶段,协调者发生故障,那么所有的参与者还都处于锁定事务资源的状态中,而无法继续完成事务操作。
- 网络分区是会数据不一致:阶段二中,当协调者向参与者发送commit请求之后,发生了网络分区,那就只有一部分参与者执行了commit,产生了数据不一致的情况
(3)三阶段提交协议(3PC)
原理
三阶段提交(Three-phase commit)是二阶段提交(2PC)的改进版本。三阶段提交协议(3PC)主要是为了解决两阶段提交协议的单点故障阻塞问题,2PC 存在的问题是当协调者崩溃时,参与者可能在协调者恢复之前保持阻塞。
增加的改进措施:
- 增加超时机制:不只有协调者能感知参与者的超时,参与者也能感知协调者的超时,当其超时时,就释放自身的资源,不再继续阻塞
- 在准备阶段前多加了一个准备阶段,变成有 CanCommit、PreCommit、DoCommit 三个阶段
过程:
- CanCommit 阶段:协调者向参与者发送commit请求,参与者如果可以提交就返回Yes响应,否则返回No响应,这个过程很轻量,比如尝试获取数据库锁
- PreCommit阶段:根据第一阶段接受到的结果采取相应操作
- doCommit阶段:该阶段进行真正的事务提交,也可以分为以下两种情况
几种情况示意图如下
2. 基于可靠消息服务
假设有A和B两个系统,分别可以处理任务A和任务B。此时系统A中存在一个业务流程,需要将任务A和任务B在同一个事务中处理。下面来介绍基于消息中间件来实现这种分布式事务。
- 在系统A处理任务A前,首先向消息中间件发送一条消息
- 消息中间件收到后将该条消息持久化,但并不投递。此时下游系统B仍然不知道该条消息的存在。
- 消息中间件持久化成功后,便向系统A返回一个确认应答;
- 系统A收到确认应答后,则可以开始处理任务A;
- 任务A处理完成后,向消息中间件发送Commit请求。该请求发送完成后,对系统A而言,该事务的处理过程就结束了,此时它可以处理别的任务了。
- 消息中间件收到Commit指令后,便向系统B投递该消息,从而触发任务B的执行;
- 当任务B执行完成后,系统B向消息中间件返回一个确认应答,告诉消息中间件该消息已经成功消费,此时,这个分布式事务完成。
总结一下上述过程的特点,
- 消息中间件扮演者分布式事务协调者的角色。
- 系统A完成任务A后,到任务B执行完成之间,会存在一定的时间差。在这个时间差内,整个系统处于数据不一致的状态,但这短暂的不一致性是可以接受的,因为经过短暂的时间后,系统又可以保持数据一致性,满足BASE理论。
上述过程中,如果任务A处理失败,那么需要进入回滚流程,如下图所示:
- 向消息中间件发送Rollback请求。和发送Commit请求一样,系统A发完之后便可以认为回滚已经完成,它便可以去做其他的事情。
- 消息中间件收到回滚请求后,直接将该消息丢弃,而不投递给系统B,从而不会触发系统B的任务B
Commit和Rollback指令都有可能在传输途中丢失,当出现这种情况的时候,消息中间件通过超时询问机制保证事务的一致性
- 提交若获得的状态是“提交”,则将该消息投递给系统B。
- 回滚若获得的状态是“回滚”,则直接将条消息丢弃。
- 处理中若获得的状态是“处理中”,则继续等待。
为保证一致性,消息中间件必须确保发送的消息能被下游接收到,如果超时就会重传,直到得到应答
3. 最大努力通知
是最简单的一种柔性事务,适用于一些最终一致性时间敏感度低的业务。
1、不可靠消息:业务活动主动方,在完成业务处理之后,向业务活动的被动方发送消息,直到通知N次后不再通知,允许消息丢失(不可靠消息)。
2、定期校对:业务活动的被动方,根据定时策略,向业务活动主动方查询(主动方提供查询接口),恢复丢失的业务消息。
4. TCC
TCC实际上把数据库层的二阶段提交上提到了应用层来实现,即Try、Confirm和Cancel操作功能需业务提供
原文地址:https://blog.csdn.net/kazuhura/article/details/134577004
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_13655.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!