本文介绍: 使用 python 绘制网络训练过程中的的 loss 曲线以及准确率变化曲线,这里的主要思想就时先把想要的损失值以及准确率保存下来,保存到 .txt 文件中,待网络训练结束我们再拿这存储数据绘制各种曲线。其大致步骤为:数据读取存储 – > loss曲线绘制 – > 准确率曲线绘制我们首先要得到训练时的数据,以损失值为例,网络迭代一次都会产生相应的 loss,那么我们就把每一次损失值都存储下来,存储列表保存到 .txt 文件中。保存文件下图所示:上图为部分损失值,根据迭代次数而异,要是迭

Python 绘制 loss 曲线、准确率曲线

使用 python 绘制网络训练过程中的的 loss 曲线以及准确率变化曲线,这里的主要思想就时先把想要的损失值以及准确率保存下来,保存.txt 文件中,待网络训练结束我们再拿这存储的数据绘制各种曲线。

其大致步骤为:数据读取存储 – > loss曲线绘制 – > 准确率曲线绘制

一、数据读取存储部分

我们首先要得到训练时的数据,以损失值为例,网络迭代一次都会产生相应的 loss,那么我们就把每一次的损失值都存储下来,存储到列表,保存到 .txt 文件中。保存的文件下图所示

[1.3817585706710815, 1.8422836065292358, 1.1619832515716553, 0.5217241644859314, 0.5221078991889954, 1.3544578552246094, 1.3334463834762573, 1.3866571187973022, 0.7603049278259277]

上图为部分损失值,根据迭代次数而异,要是迭代了1万次,这里就会有1万个损失值。
而准确率值是每一个 epoch 产生一个值,要是训练100个epoch,就有100个准确率值。

(那么问题来了,这里的损失值是怎么保存到文件中的呢? 很少有人讲这个,也有一些小伙伴们来咨询,这里就统一记录一下,包括损失值和准确率值。)

首先,找到网络训练代码,就是项目中的 main.py,或者 train.py ,在文件里先找到训练部分,里面经常会有这样一行代码

for epoch in range(resume_epoch, num_epochs):   # 就是这一行
	####
	...
	loss = criterion(outputs, labels.long())              # 损失样例
	...
    epoch_acc = running_corrects.double() / trainval_sizes[phase]    # 准确率样例
    ...
    ###

从这一行开始就是训练部分了,往下会找到类似的这两句代码,就是损失值和准确率值了。

这时候将以下代码加入源代码可以了:

train_loss = []
train_acc = []
for epoch in range(resume_epoch, num_epochs):          # 就是这一行
	###
	...
	loss = criterion(outputs, labels.long())           # 损失样例
	train_loss.append(loss.item())                     # 损失加入到列表中
	...
	epoch_acc = running_corrects.double() / trainval_sizes[phase]    # 准确率样例
	train_acc.append(epoch_acc.item())                 # 准确率加入到列表中
	... 
with open("./train_loss.txt", 'w') as train_los:
    train_los.write(str(train_loss))

with open("./train_acc.txt", 'w') as train_ac:
     train_ac.write(str(train_acc))

这样就算完成了损失值和准确率值的数据存储了!

二、绘制 loss 曲线

主要需要 numpy 库和 matplotlib 库,如果不会安装可以自行百度,很简单

首先,将 .txt 文件中的存储的数据读取进来,以下是读取函数

import numpy as np

# 读取存储为txt文件的数据
def data_read(dir_path):
    with open(dir_path, "r") as f:
        raw_data = f.read()
        data = raw_data[1:-1].split(", ")   # [-1:1]是为了去除文件中的前后中括号"[]"

    return np.asfarray(data, float)

然后,就是绘制 loss 曲线部分:

if __name__ == "__main__":

	train_loss_path = r"E:relate_codeGaitpart-mastertrain_loss.txt"   # 存储文件路径
	
	y_train_loss = data_read(train_loss_path)        # loss值,即y轴
	x_train_loss = range(len(y_train_loss))			 # loss的数量,即x

	plt.figure()

    # 去除顶部和右边框
    ax = plt.axes()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)

    plt.xlabel('iters')    # x标签
    plt.ylabel('loss')     # y轴标签
	
	# 以x_train_loss为横坐标,y_train_loss为纵坐标,曲线宽度为1,实线,增加标签,训练损失,
	# 默认颜色,如果想更改颜色,可以增加参数color='red',这是红色。
    plt.plot(x_train_loss, y_train_loss, linewidth=1, linestyle="solid", label="train loss")
    plt.legend()
    plt.title('Loss curve')
    plt.show()

这样就算把损失图像画出来了!如下
在这里插入图片描述

三、绘制准确率曲线

有了上面的基础,这就简单很多了。
只是有一点要记住,上面的x轴是迭代次数,这里的是训练轮次 epoch。

if __name__ == "__main__":

	train_acc_path = r"E:relate_codeGaitpart-mastertrain_acc.txt"   # 存储文件路径
	
	y_train_acc = data_read(train_acc_path)       # 训练准确率值,即y轴
	x_train_acc = range(len(y_train_acc))			 # 训练阶段准确率的数量,即x轴

	plt.figure()

    # 去除顶部和右边框
    ax = plt.axes()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)

    plt.xlabel('epochs')    # x轴标签
    plt.ylabel('accuracy')     # y轴标签
	
	# 以x_train_acc为横坐标,y_train_acc为纵坐标,曲线宽度为1,实线,增加标签,训练损失,
	# 增加参数color='red',这是红色。
    plt.plot(x_train_acc, y_train_acc, color='red',linewidth=1, linestyle="solid", label="train acc")
    plt.legend()
    plt.title('Accuracy curve')
    plt.show()

这样就把准确率变化曲线画出来了!如下
在这里插入图片描述
以下是完整代码,以绘制准确率曲线为例,并且将x轴换成了iters,和损失曲线保持一致,供参考

import numpy as np
import matplotlib.pyplot as plt


# 读取存储为txt文件的数据
def data_read(dir_path):
    with open(dir_path, "r") as f:
        raw_data = f.read()
        data = raw_data[1:-1].split(", ")

    return np.asfarray(data, float)


# 不同长度数据,统一一个标准,倍乘x轴
def multiple_equal(x, y):
    x_len = len(x)
    y_len = len(y)
    times = x_len/y_len
    y_times = [i * times for i in y]
    return y_times


if __name__ == "__main__":

    train_loss_path = r"E:relate_codeGaitpart-masterfile_txttrain_loss.txt"
    train_acc_path = r"E:relate_codeGaitpart-mastertrain_acc.txt"

    y_train_loss = data_read(train_loss_path)
    y_train_acc = data_read(train_acc_path)

    x_train_loss = range(len(y_train_loss))
    x_train_acc = multiple_equal(x_train_loss, range(len(y_train_acc)))

    plt.figure()

    # 去除顶部和右边框框
    ax = plt.axes()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)

    plt.xlabel('iters')
    plt.ylabel('accuracy')

    # plt.plot(x_train_loss, y_train_loss, linewidth=1, linestyle="solid", label="train loss")
    plt.plot(x_train_acc, y_train_acc,  color='red', linestyle="solid", label="train accuracy")
    plt.legend()

    plt.title('Accuracy curve')
    plt.show()

日常学习记录,一起交流讨论吧!侵权联系~

原文地址:https://blog.csdn.net/WYKB_Mr_Q/article/details/125661871

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_15555.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注