本文介绍: 基于DCT(离散余弦变换)的图像压缩解压算法我们深入探讨了DCT变换原理、其在图像编码中的应用,并给出了相应的数学公式算法实现细节。随着数技术快速发展,图像数据日常生活中呈现爆炸性增长。因此,如何有效地压缩图像数据,同时确保良好的图像质量成为一个重要的研究课题。DCT变换由于其良好的能量集中特性和与人类视觉系统匹配度,被广泛应用图像压缩标准中,如JPEG。

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1、DCT变换原理

4.2、基于DCT的图像压缩

4.3、基于DCT的图像解压缩

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

....................................................................
%调用8x8矩阵量化等级  
load Q10.mat

% 对R、G、B通道应用压缩函数func_ys,得到压缩后的图像Rys、Gys、Bys  
Rys  = func_ys(R1,Coff_dct,Q_dct,Bsize);
Gys  = func_ys(G1,Coff_dct,Q_dct,Bsize);
Bys  = func_ys(B1,Coff_dct,Q_dct,Bsize);

% 将压缩后的通道数据合并一个新的图像I1ys  
I1ys(:,:,1) = Rys;
I1ys(:,:,2) = Gys;
I1ys(:,:,3) = Bys;
imwrite(I1ys,'TMPSIys.jpg');% 将图像I1ys写入文件'TMPSIys.jpg'中  

% 对压缩后的图像应用解压函数func_deys,得到解压缩后的图像Rdeys、Gdeys、Bdeys  
Rdeys        = func_deys(Rys,Coff_dct,Q_dct,Bsize);
Gdeys        = func_deys(Gys,Coff_dct,Q_dct,Bsize);
Bdeys        = func_deys(Bys,Coff_dct,Q_dct,Bsize);
% 将解压缩后的通道数据合并成一个新的图像I2deys,并转换为uint8类型  
I2deys(:,:,1) = uint8(Rdeys);
I2deys(:,:,2) = uint8(Gdeys);
I2deys(:,:,3) = uint8(Bdeys);
imwrite(I2deys,'TMPSIdeys.jpg');% 将图像I2deys写入文件'TMPSIdeys.jpg'中  



% 获取原始图像文件和压缩后的图像文件大小字节) 

%压缩率
ys_rate = SIZE1/SIZE2;

% 显示三个图像:压缩后的图像、解压后的图像、原始图像  
figure(1)
subplot(131)
imshow(I1ys);
title('压缩图像')
subplot(132)
imshow(I2deys);
title('解压图像')
subplot(133)
imshow(I0);
title('原始图像')


I00 = imread('TMPSIdeys.jpg');
err = (double(I0) - double(I00)) .^ 2;
mse1= sum(err(:)) / (64*64); 
%PSNR 
Max_pixel = 255;
PSNR      = 20*log10((Max_pixel^2)./sqrt(mse1));
 

save R1.mat ys_rate PSNR
00084

4.算法理论概述

       基于DCT(离散余弦变换)的图像压缩与解压缩算法。我们深入探讨了DCT变换原理、其在图像编码中的应用,并给出了相应的数学公式和算法实现细节。随着数技术快速发展,图像数据在日常生活中呈现爆炸性增长。因此,如何有效地压缩图像数据,同时确保良好的图像质量,成为了一个重要的研究课题。DCT变换由于其良好的能量集中特性和与人类视觉系统匹配度,被广泛应用于图像压缩标准中,如JPEG。

4.1、DCT变换原理

      离散余弦变换(DCT)是傅里叶变换的一种变种。它将信号从时域变换到频域,使得信号的能量大部分集中在几个频率分量上。对于图像而言,DCT可以有效地将图像的能量集中在左上角的低频部分。

一维DCT变换公式如下

      二维DCT变换(通常用于图像处理可以通过两次一维DCT变换实现,首先对行进行变换,再对列进行变换。

        可以发现二维DCT变换其实是在一维DCT变换的基础上,再做一次一维DCT变换。二维DCT也可以写成矩阵相乘的形式:

         二维DCT变换的复杂度达到O(n^4),所以进行DCT变换的矩阵不宜过大。在实际处理图片过程中,需要先把矩阵分块,一般分为8×8或16×16大小,这样DCT变换不至于耗费过多的时间

4.2、基于DCT的图像压缩

基于DCT的图像压缩主要步骤如下

分块:将原始图像分为8×8或16×16的小块。
DCT变换:对每个小块进行二维DCT变换。
量化:使用预定的量化表对DCT系数进行量化,这一步骤是有损的,会丢失部分信息
编码:采用Zig-Zag扫描将量化后的系数排列为一维序列,并使用霍夫曼编码进行进一步压缩。
通过以上的步骤,我们可以实现图像的压缩。需要注意的是,量化步骤是有损的,因此解压后的图像与原始图像会存在一定的差异。

4.3、基于DCT的图像解压缩

解压缩是压缩的逆过程,主要包括以下步骤:

解码使用霍夫曼解码编码后的数据流进行解码
反量化:使用与压缩时相同的量化表对解码后的数据进行反量化。
反DCT变换:对反量化后的数据进行二维反DCT变换。
重构:将反DCT变换后的块组合成完整的图像。

5.算法完整程序工程

OOOOO

OOO

O

原文地址:https://blog.csdn.net/aycd1234/article/details/134589277

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_16255.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注