1.树的概念及其结构

1.1.树概念

树是一种非线性数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

1.有一个特殊结点,称为根结点,根节点没有前驱结点
2.除根节点外,其余结点被分成M(M>0)个互不相交集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
3.因此,树是递归定义的。

1.2.树的结构

在这里插入图片描述

注意:树形结构中,子树之间不能有交集,否则就不是树形结构
在这里插入图片描述

1.3树的相关概念

在这里插入图片描述

节点的度: 一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
节点终端节点 度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
终端节点或分支节点: 度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
双亲节点或父节点: 若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点: 一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点: 具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度: 一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次: 从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度深度 树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点: 双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先: 从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙: 以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:mm>0)棵互不相交的树的集合称为森林;

1.4.树的表示

树结构相对线性表比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里简单的了解其中最常用的孩子兄弟表示法

typedef int DataType;
struct Node
{
 struct Node* _firstChild1; // 第一个孩子结点
 struct Node* _pNextBrother; // 指向其下一个兄弟结点
 DataType _data; // 结点中的数据
};

在这里插入图片描述

1.5. 树在实际中的运用(表示文件系统目录树结构)

在这里插入图片描述

2.二叉树的概念及其结构

2.1二叉树的概念

一棵二叉树是结点的一个有限

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

在这里插入图片描述

上图可以看出:

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序

注意:对于任意的二叉树都是由以下几种情况复合而成的:

在这里插入图片描述

2.2.现实中的二叉树:

在这里插入图片描述

2.3. 特殊的二叉树:

1. 满二叉树: 一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树。
2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

在这里插入图片描述

2.4. 二叉树的性质

在这里插入图片描述
在这里插入图片描述

2.5. 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1.顺序存储
顺序结构存储就是使用数组存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空
间的浪费。而现实中使用中只有堆才会使用数组存储,关于堆我们后面的章节会专门讲解二叉树顺序存储在物理上是一个数逻辑上是一颗二叉树。

在这里插入图片描述

2. 链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素逻辑关系。 通常的方法
链表每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所
在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程
学到高阶数据结构红黑树等会用到三叉链。

在这里插入图片描述

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
 struct BinTreeNode* _pRight; // 指向当前节点右孩子
 BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{
 struct BinTreeNode* _pParent; // 指向当前节点的双亲
 struct BinTreeNode* _pLeft; // 指向当前节点左孩子
 struct BinTreeNode* _pRight; // 指向当前节点右孩子
 BTDataType _data; // 当前节点值域
}

3.二叉树的链式结构的实现

3.1头文件的实现 —— (Tree.h)

Tree.h
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#include<assert.h>

typedef int BTDataType;
typedef struct BinaryTreeNode
{
	BTDataType data;
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;

}TreeNode;

//创建二叉树节点
TreeNode* BuyTreeNode(int x);
//自定义二叉树
TreeNode* CreateNode();
//前序遍历
void PrevOrder(TreeNode* root);
//中序遍历
void InOrder(TreeNode* root);
//后序遍历
void BackOrder(TreeNode* root);
//二叉树节点个数
int TreeSize(TreeNode* root);
//二叉树叶子节点个数
int TreeLeafSize(TreeNode* root);
//二叉树高度/(深度)
int TreeHeight(TreeNode* root);
//二叉树第k层节点个数
int TreeLevelK(TreeNode* root, int k);
//查找二叉树节点
TreeNode* TreeFind(TreeNode* root, BTDataType x);

3.2.源文件的实现 —— (Tree.c

Tree.c
#include"Tree.h"

//创建二叉树节点
TreeNode* BuyTreeNode(int x)
{
	TreeNode* root = (TreeNode*)malloc(sizeof(TreeNode));
	root->data = x;
	root->left = NULL;
	root->right = NULL;
	return root;
}
//前序遍历
void PrevOrder(TreeNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	printf("%d ", root->data);
	PrevOrder(root->left);
	PrevOrder(root->right);
}
//中序遍历
void InOrder(TreeNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}
		

	InOrder(root->left);
	printf("%d ", root->data);
	InOrder(root->right);
}
//后序遍历
void BackOrder(TreeNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	BackOrder(root->left);
	BackOrder(root->right);
	printf("%d ", root->data);
}
//二叉树节点个数
int TreeSize(TreeNode* root)
{
	if (root == NULL)
		return 0;
	if (root->left==NULL&amp;&amp;root->right==NULL)
		return 1;
	return TreeSize(root->left) + TreeSize(root->right) + 1;
}
//二叉树叶子节点个数
int TreeLeafSize(TreeNode* root)
{
	if (root == NULL)
		return 0;
	if (root->left==NULL&amp;&amp;root->right==NULL)
		return 1;
	return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}
//二叉树高度/(深度)
int TreeHeight(TreeNode* root)
{
	if (root == NULL)
		return 0;
	int leftHeight = TreeHeight(root->left);
	int rightHeight = TreeHeight(root->right);

	return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
//二叉树第k层节点个数
int TreeLevelK(TreeNode* root, int k)
{
	if (root == NULL)
		return 0;
	if (k==1)
		return 1;

	return TreeLevelK(root->left, k - 1) + TreeLevelK(root->right, k - 1);
}
//查找二叉树节点
TreeNode* TreeFind(TreeNode* root, BTDataType x)
{
	if (root == NULL)
	{
		return NULL;
	}
	if (root->data == x)
		return root;
	TreeNode* ret1 = TreeFind(root->left, x);
	if (ret1)
		return ret1;
	TreeNode* ret2 = TreeFind(root->right, x);
	if (ret2)
		return ret2;
	return NULL;
}

3.3.测试文件的实现 —— (test.c)

test.c
#include"Tree.h"

//自定义二叉树
TreeNode* CreateNode()
{
	TreeNode* node1 = BuyTreeNode(1);
	TreeNode* node2 = BuyTreeNode(2);
	TreeNode* node3 = BuyTreeNode(3);
	TreeNode* node4 = BuyTreeNode(4);
	TreeNode* node5 = BuyTreeNode(5);
	TreeNode* node6 = BuyTreeNode(6);
	TreeNode* node7 = BuyTreeNode(7);

	node1->left = node2;
	node1->right = node4;
	node2->left = node3;
	node4->left = node5;
	node4->right = node6;
	node5->right = node7;

	return node1;
}

int main()
{
	TreeNode* root = CreateNode();

	printf("前序遍历:");
	PrevOrder(root);
	printf("n");
	printf("中序遍历:");
	InOrder(root);
	printf("n");
	printf("后序遍历:");
	BackOrder(root);
	printf("n");

	printf("二叉树节点个数:");
	printf("%dn", TreeSize(root));
	printf("二叉树叶子节点个数:");
	printf("%dn", TreeLeafSize(root));
	printf("二叉树高度(深度):");
	printf("%dn", TreeHeight(root));
	int k = 0;
	printf("请输入需要计算节点的层数:");
	scanf("%d", &amp;k);
	printf("%dn", TreeLevelK(root, k));
	int x = 0;
    printf("请输入你要查找的二叉树节点:");
    scanf("%d", &amp;x);
    printf("查找二叉树节点:");
    printf("%pn", TreeFind(root,x));
}

4.实际数据测试运行展示

在这里插入图片描述

在这里插入图片描述

原文地址:https://blog.csdn.net/qq_73900397/article/details/134664030

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_19305.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注