本文介绍: 在队列中,我们仅能删除头部元素或在尾部添加元素。如下图所示双向队列(doubleended queue)提供了更高的灵活性,允许在头部和尾部执行元素的添加删除操作

队列中,我们仅能删除头部元素或在尾部添加元素。如下所示,双向队列(doubleended queue)提供了更高的灵活性,允许在头部和尾部执行元素的添加或删除操作

9.1 双向队列常用操作

双向队列的常用操作如下所示,具体的方法名称需要根据所使用编程语言确定

 同样地,我们可以直接使用编程语言中已实现的双向队列类:

/* 初始化双向队列 */
deque<int> deque;

/* 元素入队 */
deque.push_back(2);   // 添加至队尾
deque.push_back(5);
deque.push_back(4);
deque.push_front(3);  // 添加至队首
deque.push_front(1);

/* 访问元素 */
int front = deque.front(); // 队首元素
int back = deque.back();   // 队尾元素

/* 元素出队 */
deque.pop_front();  // 队首元素出队
deque.pop_back();   // 队尾元素出队

/* 获取双向队列的长度 */
int size = deque.size();

/* 判断双向队列是否为空 */
bool empty = deque.empty();

9.2 双向队列实现

双向队列的实现与队列类似,可以选择链表数组作为底层数据结构

9.2.1 基于双向链表实现 

回顾上一节内容我们使用普通单向链表实现队列,因为它可以方便地删除头节点对应出队操作)和在尾节点后添加新节点对应入队操作)。

对于双向队列而言,头部和尾部都可以执行入队出队操作。换句话说,双向队列需要实现一个对称方向操作。为此,我们采用“双向链表”作为双向队列的底层数据结构

如下所示我们将双向链表的头节点和尾节点视为双向队列的队首和队尾,同时实现在两端添加和删除节点功能

 

 

实现代码如下所示

/* 双向链表节点 */
struct DoublyListNode {
    int val;              // 节点值
    DoublyListNode *next; // 后继节点指针
    DoublyListNode *prev; // 前驱节点指针
    DoublyListNode(int val) : val(val), prev(nullptr), next(nullptr) {
    }
};

/* 基于双向链表实现的双向队列 */
class LinkedListDeque {
  private:
    DoublyListNode *front, *rear; // 头节点 front ,尾节点 rear
    int queSize = 0;              // 双向队列的长度

  public:
    /* 构造方法 */
    LinkedListDeque() : front(nullptr), rear(nullptr) {
    }

    /* 析构方法 */
    ~LinkedListDeque() {
        // 遍历链表删除节点,释放内存
        DoublyListNode *pre, *cur = front;
        while (cur != nullptr) {
            pre = cur;
            cur = cur->next;
            delete pre;
        }
    }

    /* 获取双向队列的长度 */
    int size() {
        return queSize;
    }

    /* 判断双向队列是否为空 */
    bool isEmpty() {
        return size() == 0;
    }

    /* 入队操作 */
    void push(int num, bool isFront) {
        DoublyListNode *node = new DoublyListNode(num);
        // 若链表为空,则令 front 和 rear指向 node
        if (isEmpty())
            front = rear = node;
        // 队首入队操作
        else if (isFront) {
            // 将 node 添加至链表头部
            front->prev = node;
            node->next = front;
            front = node; // 更新头节点
        // 队尾入队操作
        } else {
            // 将 node 添加至链表尾部
            rear->next = node;
            node->prev = rear;
            rear = node; // 更新尾节点
        }
        queSize++; // 更新队列长度
    }

    /* 队首入队 */
    void pushFirst(int num) {
        push(num, true);
    }

    /* 队尾入队 */
    void pushLast(int num) {
        push(num, false);
    }

    /* 出队操作 */
    int pop(bool isFront) {
        if (isEmpty())
            throw out_of_range("队列为空");
        int val;
        // 队首出队操作
        if (isFront) {
            val = front->val; // 暂存头节点值
            // 删除头节点
            DoublyListNode *fNext = front->next;
            if (fNext != nullptr) {
                fNext->prev = nullptr;
                front->next = nullptr;
                delete front;
            }
            front = fNext; // 更新头节点
        // 队尾出队操作
        } else {
            val = rear->val; // 暂存尾节点值
            // 删除尾节点
            DoublyListNode *rPrev = rear->prev;
            if (rPrev != nullptr) {
                rPrev->next = nullptr;
                rear->prev = nullptr;
                delete rear;
            }
            rear = rPrev; // 更新尾节点
        }
        queSize--; // 更新队列长度
        return val;
    }

    /* 队首出队 */
    int popFirst() {
        return pop(true);
    }

    /* 队尾出队 */
    int popLast() {
        return pop(false);
    }

    /* 访问队首元素 */
    int peekFirst() {
        if (isEmpty())
            throw out_of_range("双向队列为空");
        return front->val;
    }

    /* 访问队尾元素 */
    int peekLast() {
        if (isEmpty())
            throw out_of_range("双向队列为空");
        return rear->val;
    }

    /* 返回数组用于打印 */
    vector<int> toVector() {
        DoublyListNode *node = front;
        vector<int> res(size());
        for (int i = 0; i < res.size(); i++) {
            res[i] = node->val;
            node = node->next;
        }
        return res;
    }
};

9.2.2 基于数组实现

如下所示,与基于数组实现队列类似,我们也可以使用环形数组来实现双向队列。

 

 

在队列的实现基础上,仅需增加“队首入队”和“队尾出队”的方法:

/* 基于环形数组实现的双向队列 */
class ArrayDeque {
  private:
    vector<int> nums; // 用于存储双向队列元素的数组
    int front;        // 队首指针,指向队首元素
    int queSize;      // 双向队列长度

  public:
    /* 构造方法 */
    ArrayDeque(int capacity) {
        nums.resize(capacity);
        front = queSize = 0;
    }

    /* 获取双向队列的容量 */
    int capacity() {
        return nums.size();
    }

    /* 获取双向队列的长度 */
    int size() {
        return queSize;
    }

    /* 判断双向队列是否为空 */
    bool isEmpty() {
        return queSize == 0;
    }

    /* 计算环形数组索引 */
    int index(int i) {
        // 通过取余操作实现数组首尾相连
        // 当 i 越过数组尾部后,回到头部
        // 当 i 越过数组头部后,回到尾部
        return (i + capacity()) % capacity();
    }

    /* 队首入队 */
    void pushFirst(int num) {
        if (queSize == capacity()) {
            cout << "双向队列已满" << endl;
            return;
        }
        // 队首指针向左移动一位
        // 通过取余操作,实现 front 越过数组头部后回到尾部
        front = index(front - 1);
        // 将 num 添加至队首
        nums[front] = num;
        queSize++;
    }

    /* 队尾入队 */
    void pushLast(int num) {
        if (queSize == capacity()) {
            cout << "双向队列已满" << endl;
            return;
        }
        // 计算尾指针,指向队尾索引 + 1
        int rear = index(front + queSize);
        // 将 num 添加至队尾
        nums[rear] = num;
        queSize++;
    }

    /* 队首出队 */
    int popFirst() {
        int num = peekFirst();
        // 队首指针向后移动一位
        front = index(front + 1);
        queSize--;
        return num;
    }

    /* 队尾出队 */
    int popLast() {
        int num = peekLast();
        queSize--;
        return num;
    }

    /* 访问队首元素 */
    int peekFirst() {
        if (isEmpty())
            throw out_of_range("双向队列为空");
        return nums[front];
    }

    /* 访问队尾元素 */
    int peekLast() {
        if (isEmpty())
            throw out_of_range("双向队列为空");
        // 计算尾元素索引
        int last = index(front + queSize - 1);
        return nums[last];
    }

    /* 返回数组用于打印 */
    vector<int> toVector() {
        // 仅转换有效长度范围内的列表元素
        vector<int> res(queSize);
        for (int i = 0, j = front; i < queSize; i++, j++) {
            res[i] = nums[index(j)];
        }
        return res;
    }
};

9.3 双向队列应用

双向队列兼具栈与队列的逻辑因此它可以实现这两者的所有应用场景,同时提供更高的自由度

我们知道软件的“撤销功能通常使用栈来实现:系统将每次更改操作 push 到栈中,然后通过 pop 实现撤销。然而,考虑系统资源限制软件通常会限制撤销的步数例如仅允许保存 (50) 步)。当栈的长度超过 (50) 时,软件需要在栈底(队首)执行删除操作。但栈无法实现该功能,此时就需要使用双向队列来替代栈。请注意,“撤销”的核心逻辑仍然遵循栈的先入后出原则,只是双向队列能够更加灵活地实现一些额外逻辑

原文地址:https://blog.csdn.net/zeyeqianli/article/details/134762051

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_36504.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除!

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注