本文介绍: 在数据分析中,经常会遇到这样的情况:根据某一列(或多列)标签把数据划分为不同的组别,然后再对其进行数据分析。比如,某网站对注册用户的性别或者年龄等进行分组,从而研究出网站用户的画像(特点)。在Pandas 中,要完成数据的分组操作,需要使用 groupby() 函数,它和 SQL 的GROUP BY操作非常相似。在划分出来的组(group)上应用一些统计函数,从而达到数据分析的目的,比如对分组数据进行聚合、转换,或者过滤。
Pandas groupby分组操作详解
在数据分析中,经常会遇到这样的情况:根据某一列(或多列)标签把数据划分为不同的组别,然后再对其进行数据分析。比如,某网站对注册用户的性别或者年龄等进行分组,从而研究出网站用户的画像(特点)。在
Pandas 中,要完成数据的分组操作,需要使用 groupby() 函数,它和 SQL 的GROUP BY操作非常相似。
在划分出来的组(group)上应用一些统计函数,从而达到数据分析的目的,比如对分组数据进行聚合、转换,或者过滤。这个过程主要包含以下三步:
创建groupby分组对象
使用 groupby() 可以沿着任意轴分组。您可以把分组时指定的键(key)作为每组的组名,方法如下所示:
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'],
'score': [82, 98, 91, 87],
'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
print(df)
#生成分组groupby对象
print(df.groupby('score'))
查看分组结果
1) groups查看分组结果
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'],
'score': [82, 98, 91, 87],
'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#查看分组
print(df.groupby('score').groups)
2) 多个列标签分组
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'],
'score': [82, 98, 91, 87],
'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#查看分组
print(df.groupby(['Name','score']).groups)
遍历分组数据
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'],
'score': [82, 98, 91, 87],
'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#查看分组
grouped=df.groupby('score')
for label, option_course in grouped:
#其中key代表分组后字典的键,也就是score
print(label)
#字典对应的值选修的科目
print(option_course)
应用聚合函数
当您在创建 groupby 对象时,通过 agg() 函数可以对分组对象应用多个聚合函数:
import pandas as pd
import numpy as np
data = {'name': ['John', 'Helen', 'Sona', 'Ella'],
'score': [82, 98, 91, 87],
'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
grouped=df.groupby('name')
#应用一个聚合函数求均值
print(grouped['score']).agg(np.mean)
组的转换操作
在组的行或列上可以执行转换操作,最终会返回一个与组大小相同的索引对象。示例如下:
import pandas as pd
import numpy as np
df = pd.DataFrame({'种类':['水果','水果','水果','蔬菜','蔬菜','肉类','肉类'],
'产地':['朝鲜','中国','缅甸','中国','菲律宾','韩国','中国'],
'水果':['橘子','苹果','哈密瓜','番茄','椰子','鱼肉','牛肉'],
'数量':[3,5,5,3,2,15,9],
'价格':[2,5,12,3,4,18,20]})
#分组求均值,水果、蔬菜、肉类
#对可执行计算的数值列求均值
print(df.groupby('种类').transform(np.mean))
#transform()直接应用demean,实现去均值操作
demean = lambda arr:arr-arr.mean()
print(df.groupby('种类').transform(demean))
#自定义函数
# 返回分组的前n行数据
def get_rows(df,n):
#从1到n行的所有列
return df.iloc[:n,:]
#分组后的组名作为行索引
print(df.groupby('种类').apply(get_rows,n=1))
组的数据过滤操作
通过 filter() 函数可以实现数据的筛选,该函数根据定义的条件过滤数据并返回一个新的数据集。
import pandas as pd
import numpy as np
data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[874,789,863,663,741,802,756,788,694,701,812,698]}
df = pd.DataFrame(data)
#定义lambda函数来筛选数据
print (df.groupby('Team').filter(lambda x: len(x) >= 2))
原文地址:https://blog.csdn.net/guguo666/article/details/128329425
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_41158.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。