flink stream数据 动态写入多个topic

flink1.15之前

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.{FlinkKafkaProducer, KafkaSerializationSchema}
import org.apache.kafka.clients.producer.ProducerRecord

object DynamicKafkaProducer {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment

    // 数据流中的元素类型为 (topic: String, message: String)
    val stream: DataStream[(String, String)] = ...

    // 定义 Kafka 序列化val kafkaSerializationSchema = new KafkaSerializationSchema[(String, String)] {
      override def serialize(element: (String, String), timestamp: java.lang.Long): ProducerRecord[Array[Byte], Array[Byte]] = {
        new ProducerRecord(element._1, element._2.getBytes("UTF-8"))
      }
    }

    // 创建 FlinkKafkaProducer 实例
    val kafkaProducer = new FlinkKafkaProducer[(String, String)](
      "localh

原文地址:https://blog.csdn.net/qq_35515661/article/details/134785812

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_42850.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注