目录

测试TensorFlow是否支持GPU:

自动求导:

 数据预处理 之 统一数组维度

 定义变量和常量

 训练模型的时候设备变量的设置

生成随机数据

交叉熵损失CE和均方误差函数MSE 

全连接Dense层

维度变换reshape

增加或减小维度

数组合并

广播机制:

简单范数运算

 矩阵转置


框架本身只是用来编写工具每个框架包括Pytorchtensorflowmxnetpaddlemandspore等等框架编程语言其实差别是大同小异的,不同的点是他们编译方式运行方式或者计算速度上,我也浅浅的学习一下这个框架以便于看github上的代码可以轻松些。

我的环境

google colab的T4 GPU

首先是

测试TensorFlow是否支持GPU:

打开tfconfig包,里面有个list_pysical_devices(“GPU”)

import os
import tensorflow as tf

os.environ['TF_CPP_Min_LOG_LEVEL']='3'
os.system("clear")
print("GPU列表:",tf.config.list_logical_devices("GPU"))

运行结果

GPU列表: [LogicalDevice(name=’/device:GPU:0′, device_type=’GPU’)]

检测运行时间

def run():
  n=1000
  #CPU计算矩阵
  with tf.device('/cpu:0'):
    cpu_a = tf.random.normal([n,n])
    cpu_b = tf.random.normal([n,n])
    print(cpu_a.device,cpu_b.device)
  #GPU计算矩阵
  with tf.device('/gpu:0'):
    gpu_a = tf.random.normal([n,n])
    gpu_b = tf.random.normal([n,n])
    print(gpu_a.device,gpu_b.device)
  def cpu_run():
    with tf.device('/cpu:0'):
      c = tf.matmul(cpu_a,cpu_b)
    return c
  def gpu_run():
    with tf.device('/cpu:0'):
      c = tf.matmul(gpu_a,gpu_b)
    return c
  number=1000
  print("初次运行:")
  cpu_time=timeit.timeit(cpu_run,number=number)
  gpu_time=timeit.timeit(gpu_run,number=number)
  print("cpu计算时间:",cpu_time)
  print("Gpu计算时间:",gpu_time)

  print("再次运行:")
  cpu_time=timeit.timeit(cpu_run,number=number)
  gpu_time=timeit.timeit(gpu_run,number=number)
  print("cpu计算时间:",cpu_time)
  print("Gpu计算时间:",gpu_time)
  
run()

 可能T4显卡不太好吧…体现不出太大的效果,也可能是GPU在公用或者还没热身。

自动求导

公式
f(x)=x^n

微分(导数):
f'(x)=n*x^(n-1)

例:
y=x^2
微分(导数):
dy/dx=2x^(2-1)=2x

x = tf.constant(10.)   # 定义常数变量值
with tf.GradientTape() as tape:   #调用tf底下的求导函数
  tape.watch([x])   # 使用tape.watch()去观察和跟踪watch
  y=x**2

dy_dx = tape.gradient(y,x)
print(dy_dx)

 运行结果:tf.Tensor(20.0, shape=(), dtype=float32)

 数据预处理统一数组维度

        对拿到的脏数据进行预处理时候需要进行统一数组维度操作使用tensorflow.keras.preprocessing.sequence 底下的pad_sequences函数,比如下面有三个不等长的数组我们需要数据处理相同长度,可以进行左边或者补个数

import numpy as np
import pprint as pp #让打印出来的更加好看
from tensorflow.keras.preprocessing.sequence import pad_sequences

comment1 = [1,2,3,4]
comment2 = [1,2,3,4,5,6,7]
comment3 = [1,2,3,4,5,6,7,8,9,10]

x_train = np.array([comment1, comment2, comment3], dtype=object)
print(), pp.pprint(x_train)

# 左补0,统一数组长度
x_test = pad_sequences(x_train)
print(), pp.pprint(x_test)

# 左补255,统一数组长度
x_test = pad_sequences(x_train, value=255)
print(), pp.pprint(x_test)

# 右补0,统一数组长度
x_test = pad_sequences(x_train, padding="post")
print(), pp.pprint(x_test)

# 切取数长度, 只保留后3位
x_test = pad_sequences(x_train, maxlen=3)
print(), pp.pprint(x_test)

# 切取数长度, 只保留前3位
x_test = pad_sequences(x_train, maxlen=3, truncating="post")
print(), pp.pprint(x_test)
array([list([1, 2, 3, 4]), list([1, 2, 3, 4, 5, 6, 7]),
       list([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])], dtype=object)

array([[ 0,  0,  0,  0,  0,  0,  1,  2,  3,  4],
       [ 0,  0,  0,  1,  2,  3,  4,  5,  6,  7],
       [ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10]], dtype=int32)

array([[255, 255, 255, 255, 255, 255,   1,   2,   3,   4],
       [255, 255, 255,   1,   2,   3,   4,   5,   6,   7],
       [  1,   2,   3,   4,   5,   6,   7,   8,   9,  10]], dtype=int32)

array([[ 1,  2,  3,  4,  0,  0,  0,  0,  0,  0],
       [ 1,  2,  3,  4,  5,  6,  7,  0,  0,  0],
       [ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10]], dtype=int32)

array([[ 2,  3,  4],
       [ 5,  6,  7],
       [ 8,  9, 10]], dtype=int32)

array([[1, 2, 3],
       [1, 2, 3],
       [1, 2, 3]], dtype=int32)
(None, None)

 定义变量和常量

tf中变量定义为Variable常量Tensor这里懂了吧,pytorch里面都是Tensor,但是tf里面的Tensor代表向量其实也是可变的),要注意的是Variable数组和变量数值之间的加减乘除可以进行广播机制的运算,而且常量和变量之间也是可以相加的。

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.system("cls")

import tensorflow as tf

################################
# 定义变量
a = tf.Variable(1)
b = tf.Variable(1.)
c = tf.Variable([1.])
d = tf.Variable(1., dtype=tf.float32)

print("-" * 40)
print(a)
print(b)
print(c)
print(d)

# print(a+b)  # error:类型匹配
print(b+c)    # 注意这里是Tensor类型
print(b+c[0]) # 注意这里是Tensor类型

################################
# 定义Tensor
x1 = tf.constant(1)
x2 = tf.constant(1.)
x3 = tf.constant([1.])
x4 = tf.constant(1, dtype=tf.float32)

print("-" * 40)
print(x1)
print(x2)
print(x3)
print(x4)

print(x2+x3[0])

运行结果:

—————————————-

<tf.Variable ‘Variable:0’ shape=() dtype=int32, numpy=1&gt; <tf.Variable ‘Variable:0’ shape=() dtype=float32, numpy=1.0&gt; <tf.Variable ‘Variable:0’ shape=(1,) dtype=float32, numpy=array([1.], dtype=float32)&gt; <tf.Variable ‘Variable:0’ shape=() dtype=float32, numpy=1.0&gt; tf.Tensor([2.], shape=(1,), dtype=float32) tf.Tensor(2.0, shape=(), dtype=float32)

—————————————-

tf.Tensor(1, shape=(), dtype=int32) tf.Tensor(1.0, shape=(), dtype=float32) tf.Tensor([1.], shape=(1,), dtype=float32) tf.Tensor(1.0, shape=(), dtype=float32) tf.Tensor(2.0, shape=(), dtype=float32)

 训练模型时候设备变量的设置

使用Variable:

        如果定义整数默认定义在CPU,定义浮点数默认在GPU上,但是咱们在tf2.0上不用去关心他的变量类型,因为2.0进行运算的变量都在GPU上进行运算(前提上本地有GPU).

        使用identity指定变量所定义的设备,在2.0其实不用管了,1.0可能代码得有两个不同设备版本,但在2.0就不需要在意这个问题了。

################################
# 定义变量后看设备
a = tf.Variable(1)
b = tf.Variable(10.)

print("-" * 40)
print("a.device:", a.device, a) # CPU
print("b.device:", b.device, b) # GPU

################################
# 定义Tensor后看设备
x1 = tf.constant(100)
x2 = tf.constant(1000.)

print("-" * 40)
print("x1.device:", x1.device, x1) # CPU
print("x2.device:", x2.device, x2) # CPU

################################
print("-" * 40)

# CPU+CPU
ax1 = a + x1
print("ax1.device:", ax1.device, ax1) # GPU

# CPU+GPU
bx2 = b + x2
print("bx2.device:", bx2.device, bx2) # GPU

################################
# 指定GPU设备定义Tensor
gpu_a = tf.identity(a)
gpu_x1 = tf.identity(x1)

print("-" * 40)
print("gpu_a.device:", gpu_a.device, gpu_a)
print("gpu_x1.device:", gpu_x1.device, gpu_x1)

生成随机数

其实tf和numpy创建上是大同小异的,除了变量类型不一样。

a = np.ones(12)
print(a)
a = tf.convert_to_tensor(a)#其实没必要转换直接像下面的方法进行定义。
a = tf.zeros(12)
a = tf.zeros([4,3])
a = tf.zeros([4,6,3])
b = tf.zeros_like(a)
a = tf.ones(12)
a = tf.ones_like(b)
a = tf.fill([3,2], 10.)
a = tf.random.normal([12])
a = tf.random.normal([4,3])
a = tf.random.truncated_normal([3,2])
a = tf.random.uniform([4,3], minval=0, maxval=10)
a = tf.random.uniform([12], minval=0, maxval=10, dtype=tf.int32)
a = tf.range([12], dtype=tf.int32)
b = tf.random.shuffle(a)
print(b)

代码我就不贴了。

交叉损失CE和均方误差函数MSE 

假设batch=1

直接看怎么用,以图像分类为例输出类别个数选择大神经原的下标然后进行独热编码把它变成[1,0,0,0,…],然后就可以与softmax之后的输出概率值之间做交叉熵损失。

rows = 1
out = tf.nn.softmax(tf.random.uniform([rows,2]),axis=1)
print("out:", out)
print("预测值:", tf.math.argmax(out, axis=1), "n")

y = tf.range(rows)
print("y:", y, "n")

y = tf.one_hot(y, depth=10)
print("y_one_hot:", y, "n")

loss = tf.keras.losses.binary_crossentropy(y,out)
# loss = tf.keras.losses.mse(y, out)
print("row loss", loss, "n")

假设batch=2

rows = 2
out = tf.random.uniform([rows,1])
print("预测值:", out, "n")

y = tf.constant([1])
print("y:", y, "n")

# y = tf.one_hot(y, depth=1)

print("y_one_hot:", y, "n")

loss = tf.keras.losses.mse(y,out)
# loss = tf.keras.losses.mse(y, out)
print("row loss", loss, "n")

loss = tf.reduce_mean(loss)
print("总体损失:", loss, "n")

总损失就是一个batch的损失求均值

连接Dense层

###################################################
# Dense: y=wx+b
rows = 1
net = tf.keras.layers.Dense(1) # 一个隐藏层,一个神经元
net.build((rows, 1)) # (编译每个训练数据有1个特征
print("net.w:", net.kernel) # 参数个数
print("net.b:", net.bias) # 和Dense数一样

假设有一个特征输出,如果讲bulid参数改成(rows,3),那么神经元个数的w参数输出就变成了(3,1)大小的数据。

维度变换reshape

numpy一毛一样不用看了

# 10张彩色图片
a = tf.random.normal([10,28,28,3])
print(a)
print(a.shape) # 形状
print(a.ndim)  # 维度

b = tf.reshape(a, [10, 784, 3])
print(b)
print(b.shape) # 形状
print(b.ndim)  # 维度

c = tf.reshape(a, [10, -1, 3])
print(c)
print(c.shape) # 形状
print(c.ndim)  # 维度

d = tf.reshape(a, [10, 784*3])
print(d)
print(d.shape) # 形状
print(d.ndim)  # 维度

e = tf.reshape(a, [10, -1])
print(e)
print(e.shape) # 形状
print(e.ndim)  # 维度

增加或减小维度

a = tf.range([24])
# a = tf.reshape(a, [4,6])
print(a)
print(a.shape)
print(a.ndim)

# 增加一个维度,相当于[1,2,3]->[[1,2,3]]
b = tf.expand_dims(a, axis=0)
print(b)
print(b.shape)
print(b.ndim)

# 减少维度,相当于[[1,2,3]]->[1,2,3]
c = tf.squeeze(b, axis=0)
print(c)
print(c.shape)
print(c.ndim)

组合

真t和numpy一毛一样

####################################################
# 数组合并
# tf.concat
a = tf.zeros([2,4,3])
b = tf.ones([2,4,3])

print(a)
print(b)

# 0轴合并,4,4,3
c = tf.concat([a,b], axis=0)
print(c)

# 1轴合并,2,8,3
c = tf.concat([a,b], axis=1)
print(c)

# 2轴合并,2,4,6
c = tf.concat([a,b], axis=2)
print(c)

# 扩充一维例如多个图片放入一个大数组中 -> 2,2,4,3
c = tf.stack([a,b], axis=0)
print(c)

# 降低维数,拆分数组
m, n = tf.unstack(c, axis=0)
print(m)
print(n)

广播机制:

a = tf.constant([1, 2, 3])
print(a)

x = 1
print(a + x)

b = tf.broadcast_to(a, [3, 3])
print(b)

x = 10
print(b * x)

运行结果:

tf.Tensor([1 2 3], shape=(3,), dtype=int32)

tf.Tensor([2 3 4], shape=(3,), dtype=int32)

tf.Tensor( [[1 2 3] [1 2 3] [1 2 3]], shape=(3, 3), dtype=int32)

tf.Tensor( [[10 20 30] [10 20 30] [10 20 30]], shape=(3, 3), dtype=int32)

简单范数运算

def log(prefix="", val=""):
    print(prefix, val, "n")

# 2范数:平方和开根号
a = tf.fill([1,2], value=2.)
log("a:", a)
b = tf.norm(a) # 计算a的范数
log("a的2范数b:", b)

# 计算验证
a = tf.square(a)
log("a的平方:", a)

a = tf.reduce_sum(a)
log("a平方后的和:", a)

b = tf.sqrt(a)
log("a平方和后开根号:", b)

# a = tf.range(10, dtype=tf.float32)

 矩阵转置

#####################################################
# 矩阵转置
a = tf.range([12])
a = tf.reshape(a, [4,3])
print(a)

b = tf.transpose(a) # 行列交换
print(b)

# 1张4x4像素彩色图片
a = tf.random.uniform([4,4,3], minval=0, maxval=10, dtype=tf.int32)
print(a)

# 指定变换的轴索引
b = tf.transpose(a, perm=[0,2,1])
print(b)

# 把刚才的b再变换回来
c = tf.transpose(b, perm=[0,2,1])
print(c)

今天先敲到这里,这里推荐两个TensorFlow学习教程

        [1]TensorFlow2.0官方教程https://www.tensorflow.org/tutorials/quickstart/beginner?hl=zh-cn

        [2]小马哥

原文地址:https://blog.csdn.net/m0_61762695/article/details/134802091

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_47678.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注