本文介绍: 这种算法即为 “多源 BFS”。具体算法流程为:将所有源点都入队,然后正常跑 BFS。的位置用 BFS 向外扩展,并处理出所有的距离。给定一个 01 矩阵,求矩阵中每个元素离。列的 01 矩阵,数字之间没有空格。列的矩阵,相邻数字之间用空格隔开。发现这样的话较麻烦,于是改为考虑从。

算法提高课整理

CSDN个人主页:更好的阅读体验


本文同步发表于 CSDN | 洛谷 | AcWing | 个人博客

Start

原题链接
题目描述

给定一个 01 矩阵,求矩阵中每个元素离 1 的最短曼哈顿距离。

输入格式

第一行两个整数

n

,

m

n,m

n,m

接下来一个

n

n

n

m

m

m 列的 01 矩阵,数字之间没有空格。

输出格式

一个

n

n

n

m

m

m 列的矩阵,相邻数字之间用空格隔开。

数据范围

1

n

,

m

1000

1le n,mle 1000

1n,m1000


思路

先考虑从 0 的位置向外扩展。

发现这样的话较麻烦,于是改为考虑从 1 的位置用 BFS 向外扩展,并处理出所有的距离。

这种算法即为 “多源 BFS”。具体算法流程为:将所有源点都入队,然后正常跑 BFS。

具体细节见代码。

算法时间复杂度
AC Code

C

+

+

text{C}++

C++

#include <iostream>
#include <cstring>
#include <queue>

using namespace std;

typedef pair<int, int> PII;
#define x first
#define y second

const int N = 1010;
int dx[] = {-1, 0, 1, 0};
int dy[] = {0, 1, 0, -1};

int n, m;
char g[N][N];
int dist[N][N];

void bfs()
{
    memset(dist, -1, sizeof dist);
    queue<PII> q;
    
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            if (g[i][j] == '1')
                dist[i][j] = 0, q.push({i, j}); // 所有起点入队
    
    while (q.size())
    {
        PII t = q.front();
        q.pop();
        
        for (int i = 0; i < 4; i ++ ) // 4方向扩展
        {
            int x = t.x + dx[i], y = t.y + dy[i];
            if (x < 0 || x >= n || y < 0 || y >= m) continue; // 出界
            if (dist[x][y] != -1) continue; // 已经被遍历过
            dist[x][y] = dist[t.x][t.y] + 1; // 合法的话更新距离
            q.push({x, y}); // 新点入队
        }
    }
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 0; i < n; i ++ )
        scanf("%s", g[i]);
    
    bfs();
    
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
            printf("%d ", dist[i][j]);
        puts("");
    }
    
    return 0;
}

228aa7bed3e021faf24cf8560d3e47bb.gif

最后,如果觉得对您有帮助的话,点个赞再走吧!

原文地址:https://blog.csdn.net/xingchen_2008/article/details/135313969

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_52124.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注