目录
六大机制:分区,副本,存储,查询,数据不丢失,负载均衡 ;
一 . Kafka中生产者数据分发策略
分发策略如下这些:
-
1- 随机分发策略:将消息发到到随机的某个分区上,还是发送到Leader主副本上。Python支持,Java不支持
-
2- 指定分区策略:将消息发到指定的分区上面。Python支持,Java支持
-
3- Hash取模策略:对消息的key先取Hash值,再和分区数取模。Python支持,Java支持
-
4- 轮询策略:在Kafka的2.4及以上版本,已经更名成粘性分发策略。Python不支持,Java支持
-
5- 自定义分发策略:Python支持,Java支持
JAVA中的轮询分发策略 和 粘性分发策略:
轮询:避免数据倾斜
粘性: 产生数据倾斜
轮询分发策略: 在Kafka的老版本中存在的一种分发策略,当生产数据的时候,只有value但是没有key的时候,采用轮询。
优点: 可以保证每个分区拿到的数据基本是一样,因为是一个一个的轮询的分发
缺点: 如果采用异步发送方式,意味着一批数据发送到broker端,由于是轮询策略,会将这一批数据拆分为多个小的批次,分别再写入到不同的分区里面去,写入进去以后,每个分区都会给予响应,会影响写入效率。
粘性分发策略: 在Kafka新版本中存在的一种分发策略。当生产数据的时候,只有value但是没有key的时候,采用粘性分发策略
优点: 在发送数据的时候,首先会随机的选取一个分区,然后尽可能将数据分发到这个分区上面去,也就是尽可能粘着这个分区。该分发方式,在异步发送的操作中,效率比较高。
缺点: 在数据发送特别快的时候,可能会导致某个分区的数据比其他分区数据多很多,造成大量的数据集中在一个分区上面
二. Kafka消费者的负载均衡机制
Kafka消费者的负载均衡机制
1- 在同一个消费组中,消费者的个数最多不能超过Topic的分区数。如果超过了,就会有一些消费者处于闲置状态,消费不到任何数据。
2- 在同一个消费组中,一个Topic中一个分区的数据,只能被同个消费组中的一个消费者所消费,不能被同个消费组中多个消费者所消费。但是一个消费组内的一个消费者可以消费多个分区的数据。也就是分区和消费者的对应关系,多对一
3-不同的消费组中的消费者,可以对一个Topic的数据同时消费,也就是不同消费组间没有任何关系
三 . 数据不丢失机制
生产者端是如何保证数据不丢失的呢?
答:生产者端将消息发送给到Kafka集群以后,broker要给生产者响应信息。响应原理就是ACK机制
ACK机制当中有3个参数配置值,分别是:0 1 -1(all)
0:生产者生产消息给到Kafka集群,生产者不等待(不接收)broker返回的响应信息
1:生产者生产消息给到Kafka集群,Kafka集群中的分区对应的Leader主副本所在的broker给生产者返回响应信息
-1(all):生产者生产消息给到Kafka集群,Kafka集群中的分区对应的所有副本给生产者返回响应信息消息的生产效率排序(由高到低):0 > 1 > -1
消息的安全级别排序(由高到低):-1 > 1 > 0在实际工作中如何选择ACK参数配置?
答:根据数据的重要程度进行选择。如果数据重要,优先保证数据的安全性,再考虑生产效率;如果数据不重要,优先考虑生产效率,再尽可能提升安全级别。
Broker端如何保证数据不丢失
Broker端通过多副本机制确保数据不丢失。同时需要生产者端将acks设置为-1
消费端如何保证数据不丢失
消费者消费消息的步骤:
1- 消费者首先连接到Kafka集群中,进行消息的消费2- Kafka集群接收到Consumer消费者的消费请求以后,首先会根据group id(消费组名称),查找上次消费消息对应的offset(偏移量)
3- 如果没有查找到offset,消费者默认从Topic最新的地方开始消费
4- 如果有查找到offset,会从上次消费到的offset地方进行继续消费
4.1- 首先先确定要读取的这个offset偏移量在哪个segment文件当中
4.2- 查询这个segment文件对应的index文件,根据offset确定这个消息在log文件的什么位置,也就是确定消息的物理偏移量
4.3- 读取log文件,查询对应范围内的数据即可
4.4- 获取最终的消息数据5- 消费者在消费的过程中,底层有个线程会定时的将消费的offset提交给到Kafka集群。Kafka集群会更新对应的offset的值
Kafka中消费者如何对数据仅且只消费一次
1- 将消费者的 enable.auto.commit 属性设置为 false,并手动管理消费者的偏移量。这样可以确保消费者在处理完所有消息后才更新偏移量,避免重复消费数据。也就是将消息的消费、消息业务处理代码、offset提交代码放在同一个事务当中。
2- 使用幂等生产者或事务性生产者来确保消息只被发送一次。这样可以避免重复发送消息,从而避免消费者重复消费数据。
3- 在消息中加入唯一的ID
四 . 启动Kafka eagle命令
cd /export/server/kafka-eagle-bin-1.4.6/kafka-eagle-web-1.4.6/bin
./ke.sh start
结构化流测试linux开启命令
首先: 先下载一个 nc(netcat) 命令. 通过此命令打开一个端口号, 并且可以向这个端口写入数据
yum -y install nc
执行nc命令, 开启端口号, 写入数据:
nc -lk 55555注意: 要先启动nc,再启动我们的程序
查看端口号是否被使用命令:
netstat -nlp | grep 要查询的端口
数据积压问题处理
出现积压的原因:
-
因为数据写入目的容器失败,从而导致消费失败
-
因为网络延迟消息消费失败
-
消费逻辑过于复杂, 导致消费过慢,出现积压问题
解决方案:
-
对于第一种, 我们常规解决方案, 处理目的容器,保证目的容器是一直可用状态
-
对于第二种, 如果之前一直没问题, 只是某一天出现, 可以调整消费的超时时间。并且同时解决网络延迟问题
-
对于第三种, 一般解决方案,调整消费代码, 消费更快即可, 利于消费者的负载均衡策略,提升消费者数量
五 . 结构化流
有界: 数据大小固定,有开始和结尾
无界: 源源不断的数据,没有明确的结尾
结构化流是构建在Spark SQL处理引擎之上的一个流式的处理引擎,主要是针对无界数据的处理操作。对于结构化流同样也支持多种语言操作的API:比如 Python Java Scala SQL ….
Spark的核心是RDD。RDD出现主要的目的就是提供更加高效的离线的迭代计算操作,RDD是针对的有界的数据集,但是为了能够兼容实时计算的处理场景,提供微批处理模型,本质上还是批处理,只不过批与批之间的处理间隔时间变短了,让我们感觉是在进行流式的计算操作,目前默认的微批可以达到100毫秒一次
真正的流处理引擎: Flink、Storm(早期流式处理引擎)、Flume(流式数据采集)
数据源 File Source
将目录中写入的文件作为数据流读取,支持的文件格式为:text、csv、json、orc、parquet。。。。
文件数据源特点:
1- 不能够监听具体的文件,否则会报错误java.lang.IllegalArgumentException: Option ‘basePath’ must be a directory
2- 可以通过通配符的形式,来监听目录下的文件,符合要求的才会被读取
3- 如果监听目录中有子目录,那么无法监听到子目录的变化情况
File source只能监听目录,不能监听具体文件
读取代码通用格式:
sparksession.readStream
.format(‘CSV|JSON|TEXT|PARQUET|ORC)
.option(‘参数名1′,’参数值1’)
.option(‘参数名2′,’参数值2’)
.option(‘参数名N’,’参数值N’)
.schema(元数据信息)
.load(‘需要监听的目录地址’)
OPERATIONS数据处理操作
指的是数据处理部分,该操作和SparkSQL完全一致
Sink输出操作
append模式:
只支持追加,不支持聚合和排序,每次只打印追加的内容
complete模式:
每一次都全量处理,因为数据量大,所以必须聚合,也可以支持排序
update模式:
支持聚合的append模式,有聚合操作只会输出有变化和新增的内容,不支持排序;
原文地址:https://blog.csdn.net/m0_49956154/article/details/135566001
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_57082.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!