本文介绍: leetcode – 576

Description

There is an m x n grid with a ball. The ball is initially at the position [startRow, startColumn]. You are allowed to move the ball to one of the four adjacent cells in the grid (possibly out of the grid crossing the grid boundary). You can apply at most maxMove moves to the ball.

Given the five integers m, n, maxMove, startRow, startColumn, return the number of paths to move the ball out of the grid boundary. Since the answer can be very large, return it modulo 10^9 + 7.

Example 1:

Input: m = 2, n = 2, maxMove = 2, startRow = 0, startColumn = 0
Output: 6

Example 2:

Input: m = 1, n = 3, maxMove = 3, startRow = 0, startColumn = 1
Output: 12

Constraints:

1 <= m, n <= 50
0 <= maxMove <= 50
0 <= startRow < m
0 <= startColumn < n

Solution

Solved after help…

Recursive, the function is f(x, y, step), and when x, y is out of boundary, return 1. If used up the step, return 0.

Time complexity:

o

(

m

n

m

a

x

M

o

v

e

)

o(m*n*maxMove)

o(mnmaxMove)
Space complexity:

o

(

m

n

m

a

x

M

o

v

e

)

o(m*n*maxMove)

o(mnmaxMove)

Code

class Solution:
    def findPaths(self, m: int, n: int, maxMove: int, startRow: int, startColumn: int) -> int:
        memo = {}
        mod_val = 1000000007
        def helper(x: int, y: int, step: int) -> int:
            if x < 0 or x >= m or y < 0 or y >= n:
                memo[(x, y, step)] = 1
                return memo[(x, y, step)]
            if step >= maxMove:
                memo[(x, y, step)] = 0
                return memo[(x, y, step)]
            if (x, y, step) in memo:
                return memo[(x, y, step)]
            res = 0
            for dz in (-1, 1):
                res += helper(x + dz, y, step + 1)
                res += helper(x, y + dz, step + 1)
            memo[(x, y, step)] = res % mod_val
            return memo[(x, y, step)]
        return helper(startRow, startColumn, 0)

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注