验证集法又被称为“留出法”,基本思路是将样本数据集划分为两个互斥的集合:训练集和测试集。其中训练集占比一般为2/3~4/5,常用70%;测试集占比一般为1/5~1/3,常用30%。训练集用来构建机器学习模型;测试集也被称为“验证集”“保留集”,用来进行样本外预测,并计算测试集误差,估计模型预测能力。
验证集法的优点在于简单方便,但是也有自身劣势。一方面,验证集法的稳定性不足。验证集法的结果与随机分组高度相关,如果使用不同的随机数种子将数据分为不同的训练集和测试集,测试误差的波动可能会比较大。所以,在实施验证集法时,在训练集和测试集的划分方面需要注意保持数据分布的一致性,避免因样本集的划分而产生额外偏差,比如针对分类问题监督式学习,样本全集中有一个确定的正例/反例比例,假定为90%/10%,而如果在抽取的训练集中正例/反例比例为50%/50%,那么显然就会因样本集的划分产生较大的额外偏差,显著影响模型的泛化能力。
另一方面,验证集法的信息损失较为明显。因为我们评估的是使用训练集训练得到的模型,如果训练集比较大,接近样本全集,那么就能够更好地利用样本全集信息,得到的也更接近使用样本全集训练模型的结果,但是必然会造成测试集的过小,不可避免地会影响对模型泛化能力的评价;而如果训练集比较小,其中的样本较少,那么就大概率不能很好地利用样本全集信息,会产生较大的拟合偏差,也会影响对模型泛化能力的评价。
很多朋友反映学Python、学机器学习比较难、效果不好,我的观点是:需要拿到Python、机器学习的源代码边学习边操作,从解决问题、上手操作中获得成就感,才会越学越深入,学习效果才会好。
针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原理与算法实现》(杨维忠 张甜 著 2023年2月新书 清华大学出版社)《Python数据科学应用从入门到精通》(张甜 杨维忠 著 2023年11月新书 清华大学出版社)。这两本书的特色是在数据分析、机器学习各种算法的介绍方面通俗易懂,较少涉及数学推导,对数学基础要求相对不高,在python代码方面讲的很细致,看了以后根据自身需要选取算法、优化代码、科学调参。
《Python机器学习原理与算法实现》(杨维忠 张甜 著 2023年2月新书 清华大学出版社)内容非常详实,包含了Python和机器学习,相当于一次获得了两本书。在讲解各类机器学习算法时,逐一详解用到的各种Python代码,针对每行代码均有恰当注释(这一点基本上是大多数书目做不到的)。《Python机器学习原理与算法实现》一书创作完成后,在正式出版之前,已经开发成一套系统课程,分9次授课,在某银行内部开展了培训,490人根据行内组织统一学习,授课完成后放在知鸟平台供回放学习,9次课程累计回放量近3万次,得到参训学员的一致好评,广泛应用于各位学员的工作实践。(所以,这是一本避雷避坑、已经被亲测可行的网红书,只要用心学,都没问题哦)。