本文介绍: 对每个孩子 i,都有一个胃口g[i],这是能让孩子们满足胃口饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j]。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。2 )排序 + 双指针 + 贪心。1 )排序 + 遍历

分发饼干

描述

  • 假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

  • 对每个孩子 i,都有一个胃口g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值

示例 1

输入: g = [1,2,3], s = [1,1]
输出: 1
解释: 
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。

示例 2

输入: g = [1,2], s = [1,2,3]
输出: 2
解释: 
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

提示

  • 1 <= g.length <= 3 *

    1

    0

    4

    10^4

    104

  • 0 <= s.length <= 3 *

    1

    0

    4

    10^4

    104

  • 1 <= g[i], s[j] <=

    2

    31

    2^{31}

    231 – 1

算法实现

1 )排序 + 遍历

function findContentChildren(g: number[], s: number[]): number {
    // 升序排序个数
    g.sort((a, b) => a - b);
    s.sort((a, b) => a - b);
    let i: number = 0;
    // 遍历所有饼干尺寸
    s.forEach((item: number) => {
        // 饼干能满足当前孩子胃口,则接下来寻找下一个孩子
        if(item >= g[i]) ++i;
    });
    return i;
}

2 )排序 + 双指针 + 贪心

function findContentChildren(g: number[], s: number[]): number {
    // 升序排序两个数
    g.sort((a, b) => a - b);
    s.sort((a, b) => a - b);
    // 获取两个数组的长度
    const m: number = g.length, n: number = s.length;
    // 累计能满足孩子的数量
    let count: number = 0;
    for (let i: number = 0, j: number = 0; i < m &amp;&amp; j < n; i++, j++) {
        // 找出所有饼干范围内 找出 符合 g[i] <= s[j] 的 j
        while (j < n &amp;&amp; g[i] > s[j]) j++;
        // 当 j < n 时, 就记录一个满足条件的数额
        if (j < n) count++;
    }
    // 返回累计满足的数额
    return count;
};
  • 这是官方提供的思路
  • 为了尽可能满足最多数量的孩子,从贪心的角度考虑,应该按照孩子的胃口从小到大的顺序依次满足每个孩子
  • 且对于每个孩子,应该选择可以满足这个孩子的胃口且尺寸最小的饼干
  • 对于每个元素 g[i],找到未被使用的最小的 j 使得 g[i]≤s[j],则 s[j] 可以满足 g[i]
  • 由于 g 和 s 已经排好序,因此整个过程需要数组 g 和 s 各遍历一次
  • 当两个数组之一遍历结束时,说明所有的孩子都被分配到了饼干,或者所有的饼干都已经被分配或被尝试分配(可能有些饼干无法分配给任何孩子)
  • 此时被分配到饼干的孩子数量即为可以满足的最多数量
  • 时间复杂度:O(nlogn)
  • 空间复杂度:O(logn)
    • 严格说来是: O(log⁡m+log⁡n)
    • 其中 m 和 n 分别是数组 g 和 s 的长度
    • 空间复杂度主要是排序的额外空间开销

原文地址:https://blog.csdn.net/Tyro_java/article/details/134668646

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_6655.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注