前言

因为换了新电脑,所以环境都是从零开始配置,但是在安装李沐深度学习里常用的d2l包的时候,确实频繁报错。

这里总结一下我的报错原因,希望大家遇到bug时候能够从容面对。

一、李沐提供的安装方式

1. 创建一个新的环境

conda create --name d2l python=3.8 -y

2. 激活 d2l 环境

conda activate d2l

3. 安装深度学习框架和d2l软件包

安装深度学习框架之前,请先检查你的计算机是否有可用的GPU。 例如,你可以查看计算机是否装有NVIDIA GPU并已安装CUDA。 如果你的机器没有任何GPU,没有必要担心,因为你的CPU在前几章完全够用。 但是,如果你想流畅学习全部章节,请提早获取GPU并且安装深度学习框架的GPU版本

3.1 安装PyTorch的CPU或GPU版本

pip install torch==1.11.0
pip install torchvision==0.12.0

3.2 安装d2l包

pip install d2l==0.17.5

二、安装报错

但是按照上面的安装流程,后面会频繁报错,因为有些包下载不下来,网速很慢
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
国内源也没用:

在这里插入图片描述
一时之间陷入两难的境地!

三、解决办法

我们去d2l包的官方网站然后将包下载下载放到环境路径下,然后选择安装。

d2l的官方网站为:

https://www.cnpython.com/pypi/d2l/download

在这里插入图片描述
在这里插入图片描述

下载下来即可,我下载后的位置为:

D:AnacondaenvsPyTorch

cd本地d2l的文件目录

在这里插入图片描述
然后运行下列命令进行安装:

pip install d2l-0.15.1-py3-none-any.whl

在这里插入图片描述

可以看到下载速度很快!

在这里插入图片描述

最终,安装成功!

四、检验是否安装成功

运行命令:

conda list

在这里插入图片描述

可以看到,顺利安装成功!

原文地址:https://blog.csdn.net/wzk4869/article/details/127795541

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_32144.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注