前言
因为换了新电脑,所以环境都是从零开始配置,但是在安装李沐深度学习里常用的d2l包的时候,确实频繁报错。
这里总结一下我的报错原因,希望大家在遇到bug的时候能够从容面对。
一、李沐提供的安装方式
1. 创建一个新的环境
conda create --name d2l python=3.8 -y
2. 激活 d2l 环境
conda activate d2l
3. 安装深度学习框架和d2l软件包
在安装深度学习框架之前,请先检查你的计算机上是否有可用的GPU。 例如,你可以查看计算机是否装有NVIDIA GPU并已安装CUDA。 如果你的机器没有任何GPU,没有必要担心,因为你的CPU在前几章完全够用。 但是,如果你想流畅地学习全部章节,请提早获取GPU并且安装深度学习框架的GPU版本。
3.1 安装PyTorch的CPU或GPU版本
pip install torch==1.11.0
pip install torchvision==0.12.0
3.2 安装d2l包
pip install d2l==0.17.5
二、安装报错
但是按照上面的安装流程,后面会频繁报错,因为有些包下载不下来,网速很慢。
换国内源也没用:
一时之间陷入两难的境地!
三、解决办法
我们去d2l包的官方网站,然后将包下载下载,放到环境路径下,然后再选择安装。
https://www.cnpython.com/pypi/d2l/download
D:AnacondaenvsPyTorch
pip install d2l-0.15.1-py3-none-any.whl
最终,安装成功!
四、检验是否安装成功
运行命令:
conda list
可以看到,顺利安装成功!
原文地址:https://blog.csdn.net/wzk4869/article/details/127795541
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_32144.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。