本文介绍: **SHAP是Python开发的一个“模型解释”包,可以解释任何机器学习模型的输出**。其名称来源于**SHapley Additive exPlanation**,在合作博弈论的启发下SHAP构建一个加性的解释模型,所有的特征都视为“贡献者”。对于每个预测样本,模型都产生一个预测值,SHAP value就是该样本中每个特征所分配到的数值。
可解释机器学习
在这几年慢慢成为了机器学习的重要研究方向。作为数据科学家需要防止模型存在偏见,且帮助决策者理解如何正确地使用我们的模型。越是严苛的场景,越
需要模型提供证明它们是如何运作且避免错误的证据。
关于模型解释性,除了线性模型和决策树这种天生就有很好解释性的模型意外,sklean中有很多模型都有importance
这一接口,可以查看特征的重要性。其实这已经含沙射影地体现了模型解释性的理念。只是传统的importance的计算方法其实有很多争议,且并不总是一致。
SHAP介绍
SHAP是Python开发的一个“模型解释”包,可以解释任何机器学习模型的输出。其名称来源于SHapley Additive exPlanation,在合作博弈论的启发下SHAP构建一个加性的解释模型,所有的特征都视为“贡献者”。对于每个预测样本,模型都产生一个预测值,SHAP value就是该样本中每个特征所分配到的数值。
X
SHAP的用途
SHAP的工作原理
解释器Explainer
局部可解释性Local Interper
单个prediction的解释
多个预测的解释
获取单个样本的Top N个特征值及其对应的SHAP值
全局可解释性Global Interper
summary_plot
Feature Importance
Interaction Values
dependence_plot
其他类型的explainers
一个使用SHAP计算神经网络影响的示例
参考资料
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。