目录

1. Redis高并发超卖问题解决方案

1.1 高并发场景超卖bug解析

1.2 Redisson


 

1. Redis并发超卖问题解决方案

在高并发的秒杀抢购场景中,常常会面临一个称为“超卖”(Over-Selling)的问题。超卖指的是同一件商品被售出的数量超过了实际库存数量,导致库存出现负数。这是由于多个用户同时发起抢购请求,而系统未能有效地控制库存的并发访问

下面进行一个秒杀购买某个商品接口模拟代码如下:

@RestController
public class MyController {

    @Autowired
    StringRedisTemplate stringRedisTemplate;

    @RequestMapping("/buy/{id}")
    public String buy(@PathVariable("id") Long id){
        String key="product_" + id;
        int count = Integer.parseInt(stringRedisTemplate.opsForValue().get(key));
        if(count>0){
            stringRedisTemplate.opsForValue().set(key, String.valueOf(--count));
            System.out.println(key+"商品购买成功,剩余库存"+count);
            return "success";
        }
        System.out.println(key+"商品库存不足");
        return "error";
    }
}

上面的代码在高并发环境下容易出现超卖问题,使用JMeter进行压测,如下图

5f9ddbaf5ca24350a921c52976c30711.png

dc5ffc12710940f7b3716f579a517f0f.png

 进行压测获得的日志下图存在并发安全问题。

a0fc440a4f114afe8a1994bca769a00a.png

 要解决上面的问题,我们一开始想到的是synchronized加锁,但是在 Redis 的高并发环境下,使用 Java 中的 synchronized关键字解决超卖问题是行不通的,原因如下:

  1. 分布式环境无效 synchronized是 Java 中的关键字用于在单个 JVM 中保护共享资源。在分布式环境下,多个服务实例之间无法通过synchronized同步,因为各个实例之间无法直接共享 JVM 中的锁。

  2. 性能问题: synchronized会导致性能问题,尤其在高并发的情况下,争夺锁可能会成为瓶颈。

对于 Redis 高并发环境下的超卖问题,更合适的解决方案通常是使用 Redis 提供的分布式锁(如基于 Redis 的分布式实现)。这可以确保在分布式环境中的原子性和可靠性。

基于Redis的分布式锁,我们可以基于Redis中的Setnx命令指定key存在时,为 key 设置指定的值),更改代码如下:

@RestController
public class MyController {

    @Autowired
    StringRedisTemplate stringRedisTemplate;

    @RequestMapping("/buy/{id}")
    public String buy(@PathVariable("id") Long id){
        String lock="product_lock_"+id;
        String key="product_" + id;
        Boolean lock1 = stringRedisTemplate.opsForValue().setIfAbsent(lock, "lock");
        String message="error";
        if(!lock1){
            System.out.println("业务繁忙稍后再试");
            return "业务繁忙稍后再试";
        }
        //try catch 设计是为了防止在执行业务的时候出现异常导致redis锁一直无法释放
        try {
                int count = Integer.parseInt(stringRedisTemplate.opsForValue().get(key));
                if (count > 0) {
                    stringRedisTemplate.opsForValue().set(key, String.valueOf(--count));
                    System.out.println(key + "商品购买成功,剩余库存" + count);
                    message="success";
                }
        }catch (Throwable e){
            e.printStackTrace();
        }finally {
            stringRedisTemplate.delete(lock);
        }
        if(message.equals("error"))
        System.out.println(key+"商品库存不足");
        return message;
    }
}

然后使用JMeter压测,在10s内陆续发送500个请求日志下图,由图可以看出基本解决超卖问题。

42cb97a25afc4276adbec529b685ebb6.png

1.1 高并发场景超卖bug解析

系统在达到finally块之前崩溃宕机,锁可能会一直存在于Redis中。这可能会导致其他进程线程无法在未来获取该锁,从而导致资源被锁定,后续尝试访问资源操作可能被阻塞。因此在redis给定 key设置过期时间代码如下:

@RestController
public class MyController {

    @Autowired
    StringRedisTemplate stringRedisTemplate;

    @RequestMapping("/buy/{id}")
    public String buy(@PathVariable("id") Long id){
        String lock="product_lock_"+id;
        String key="product_" + id;
        Boolean lock1 = stringRedisTemplate.opsForValue().setIfAbsent(lock, "lock",10, TimeUnit.SECONDS); //保证原子性
//        Boolean lock2 = stringRedisTemplate.opsForValue().setIfAbsent(lock, "lock");
//        stringRedisTemplate.expire(lock,10,TimeUnit.SECONDS); //此时宕机依旧会出现redis锁无法释放,应设置原子操作
        String message="error";
        if(!lock1){
            System.out.println("业务繁忙稍后再试");
            return "业务繁忙稍后再试";
        }
        //try catch 设计是为了防止在执行业务的时候出现异常导致redis锁一直无法释放
        try {
                int count = Integer.parseInt(stringRedisTemplate.opsForValue().get(key));
                if (count > 0) {
                    stringRedisTemplate.opsForValue().set(key, String.valueOf(--count));
                    System.out.println(key + "商品购买成功,剩余库存" + count);
                    message="success";
                }
        }catch (Throwable e){
            e.printStackTrace();
        }finally {
            stringRedisTemplate.delete(lock);
        }
        if(message.equals("error"))
        System.out.println(key+"商品库存不足");
        return message;
    }
}

在高并发场景下,还存在一个问题,即业务执行时间过长可能导致 Redis 锁提前释放,并且误删除其他线程进程持有的锁。这可能发生在以下情况:

  1. 线程A获取锁并开始执行业务逻辑
  2. 由于高并发,其他线程B、C等也尝试获取相同资源的锁。
  3. 由于锁的过期时间设置为10秒,线程A的业务逻辑执行时间超过10秒,导致其锁被 Redis 自动释放。
  4. 线程B在10秒内获取到了之前由线程A持有的锁,并开始执行业务逻辑
  5. 线程A在业务逻辑执行完成后,尝试删除自己的锁,但由于已经被线程B持有,线程A实际上删除的是线程B的锁。

修改代码如下:

@RestController
public class MyController {

    @Autowired
    StringRedisTemplate stringRedisTemplate;

    @RequestMapping("/buy/{id}")
    public String buy(@PathVariable("id") Long id){
        String lock="product_lock_"+id;
        String key="product_" + id;
        String clientId=UUID.randomUUID().toString();
        Boolean lock1 = stringRedisTemplate.opsForValue().setIfAbsent(lock, clientId,10, TimeUnit.SECONDS); //保证原子性
//        Boolean lock2 = stringRedisTemplate.opsForValue().setIfAbsent(lock, "lock");
//        stringRedisTemplate.expire(lock,10,TimeUnit.SECONDS); //此时宕机依旧会出现redis锁无法释放,应设置原子操作
        String message="error";
        if(!lock1){
            System.out.println("业务繁忙稍后再试");
            return "业务繁忙稍后再试";
        }
        //try catch 设计是为了防止在执行业务的时候出现异常导致redis锁一直无法释放
        try {
                int count = Integer.parseInt(stringRedisTemplate.opsForValue().get(key));
                if (count > 0) {
                    stringRedisTemplate.opsForValue().set(key, String.valueOf(--count));
                    System.out.println(key + "商品购买成功,剩余库存" + count);
                    message="success";
                }
        }catch (Throwable e){
            e.printStackTrace();
        }finally {
            if (stringRedisTemplate.opsForValue().get(lock).equals(clientId))//在这里如果有别的业务代码并且耗时较长, stringRedisTemplate.delete(lock)之前还是有可能超过过期时间出现问题
                stringRedisTemplate.delete(lock);
        }
        if(message.equals("error"))
        System.out.println(key+"商品库存不足");
        return message;
    }
}

上面的代码在高并发场景下仍然存在概率很低的问题,所以就有了redisson分布式锁。

1.2 Redisson

Redisson 是一个用于 Java 的 Redis 客户端,它提供了丰富的功能,包括分布式锁。Redisson 的分布式锁实现基于 Redis 的分布式锁,具有简单易用、可靠性高的特点。

以下是 Redisson 分布式锁的一些重要特性用法

  1. 可重入锁: Redisson 的分布式锁是可重入的,同一线程可以多次获取同一把锁,而不会出现死锁

  2. 公平锁: Redisson 支持公平锁,即按照获取锁的顺序依次获取,避免了某些线程一直获取不到锁的情况。

  3. 超时 可以为分布式锁设置过期时间,确保即使在某些情况下锁没有被显式释放,也能在一定时间后自动释放。

  4. 异步锁: Redisson 提供了异步的分布式锁,通过异步 API 可以在不阻塞线程的情况下获取和释放锁。

  5. 监控状态 Redisson 允许监控锁的状态,包括锁是否被某个线程持有,锁的过期时间等。

39b25cb597c34ee3ad06e02ca6a73cf7.png

导入依赖

       <dependency>
            <groupId>org.redisson</groupId>
            <artifactId>redisson</artifactId>
            <version>3.23.5</version>
        </dependency>

application.yaml 配置

spring:
  redis:
    host: 127.0.0.1
    port: 6379
    password:
    lettuce:
      pool:
        max-active: 8
        max-idle: 8
        min-idle: 0
        max-wait: 1000ms

RedissonConfig配置

@Configuration
public class RedissonConfig {


    @Value("${spring.redis.host}")
    private String host;
    @Value("${spring.redis.port}")
    private String port;


    /**
     * RedissonClient,单机模式
     */
    @Bean
    public RedissonClient redisson() {
        Config config = new Config();
        SingleServerConfig singleServerConfig = config.useSingleServer();
        singleServerConfig.setAddress("redis://" + host + ":" + port);
        return Redisson.create(config);
    }
}

利用Redisson分布式锁解决超卖问题,修改代码如下:

@RestController
public class MyController {

    @Autowired
    StringRedisTemplate stringRedisTemplate;

    @Autowired
    RedissonClient redisson;

    @RequestMapping("/buy/{id}")
    public String buy(@PathVariable("id") Long id){
        String message="error";
        String lock_key="product_lock_"+id;
        String key="product_" + id;
        RLock lock = redisson.getLock(lock_key);
        //try catch 设计是为了防止在执行业务的时候出现异常导致redis锁一直无法释放
        try {
                lock.lock();
                int count = Integer.parseInt(stringRedisTemplate.opsForValue().get(key));
                if (count > 0) {
                    stringRedisTemplate.opsForValue().set(key, String.valueOf(--count));
                    System.out.println(key + "商品购买成功,剩余库存" + count);
                    message="success";
                }
        }catch (Throwable e){
            e.printStackTrace();
        }finally {
            lock.unlock();
        }
        if(message.equals("error"))
        System.out.println(key+"商品库存不足");
        return message;
    }
}

 

 

原文地址:https://blog.csdn.net/qq_43649937/article/details/134596236

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_12819.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注