系统基本信息

`nvidiasmi
nvidiasmi 470.182.03 driver version:470.182.03 cuda version: 11.4
在这里插入图片描述
查看系统体系结构

uname -a
  • UTC 2023 x86_64 x86_64 x86_64 GNU/Linux

下载miniconda

https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/?C=M&O=A

https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Linuxx86_64.sh

wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Linux-x86_64.sh

注意路径,用bash命令安装

认真看安装过程提示信息需要按Enter (回车键)或者输入yes,(如果输入yes时,不小心输多了,就按control和退格键删除),
(1)看到more就是按空格键翻页查看协议,按q退出
在这里插入图片描述

(2)接受协议输入yes
(3)默认安装路径,按enter
(4)会询问是否需要初始化输入yes

在这里插入图片描述
(5)显示安装已完成的提示信息

激活安装完成的软件

一般安装软件完成后需要重启,在Linux激活,有两种方式,第一种是重新登录服务器,第二种是输入以下命令

source ~/.bashrc
##比较常用

配置conda镜像地址

conda config --add channels r 
conda config --add channels conda-forge 
conda config --add channels bioconda

#(1)下面这四行配置清华大学conda的channel地址,国内用户推荐
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --set show_channel_urls yes
##配置清华镜像,四句代码一起复制粘贴服务器# (2)下面四行配置北京外国语大学的conda的channel地址
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/pkgs/main/ 
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/conda-forge/ 
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/bioconda/ 
conda config --set show_channel_urls yes

查看配置镜像结果
配置镜像完成后会出现一个.condarc 文件,会在 ~/.condarc 文件中 写入以下内容

在这里插入图片描述

安装pytorch

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

安装huggingface&离线下载LLama2并在本地运行流程

配置所需环境

尝试过 torch 1.12.1,发生报错
module 'torch' has no attribute 'fx'
故从头开始,配置torch 2.1.0成功。

conda create -n hfllama2 python=3.10.13
conda activate hfllama2

在这里插入图片描述

# 从官网上找的,尽管和系统有些不匹配,但是work
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118
pip install transformers

最终用到的完整的包版本如下(很简洁):

Package            Version
------------------ ------------
accelerate         0.24.1
certifi            2022.12.7
charset-normalizer 2.1.1
filelock           3.9.0
fsspec             2023.10.0
huggingface-hub    0.19.4
idna               3.4
Jinja2             3.1.2
MarkupSafe         2.1.3
mpmath             1.3.0
networkx           3.0
numpy              1.24.1
packaging          23.2
Pillow             9.3.0
pip                23.3.1
psutil             5.9.6
PyYAML             6.0.1
regex              2023.10.3
requests           2.28.1
safetensors        0.4.0
setuptools         68.2.2
sympy              1.12
tokenizers         0.15.0
torch              2.1.0+cu118
torchaudio         2.1.0+cu118
torchvision        0.16.0+cu118
tqdm               4.66.1
transformers       4.35.2
triton             2.1.0
typing_extensions  4.4.0
urllib3            1.26.13
wheel              0.41.3

llama2离线下载

https://hf-mirror.com/

huggingface-cli download --token hf_XX你的tokenXX --resume-download --local-dir-use-symlinks False meta-llama/Llama-2-7b-hf --local-dir Llama-2-7b-hf

运行官方测试代码

from transformers import AutoTokenizer
import transformers
import torch

model = "Llama-2-7b-hf" #注意,这里改成下载好的离线模型的相对路径

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

sequences = pipeline(
    'I liked "Breaking Bad" and "Band of Brothers". Do you have any recommendations of other shows I might like?n',
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
    max_length=200,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

报错问题1:
huggingface_hub.utils._validators.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96:
原因是官方代码用的是在线模式地址用的简称,不对改成离线地址后用的是./XXX的格式,报此错误,直接改成相对路径’XXX’work了。
报告小问题2:
ImportError: Using low_cpu_mem_usage=True or a device_map requires Accelerate: pip install accelerate
安装一下包用于GPU加速:
pip install accelerate
打印结果
在这里插入图片描述
“简简单单”搞了一天…
明天醒了再把13B测一下,估计问题不大。
20231127: 相同的流程,13B测试成功,当前方法可行!

原文地址:https://blog.csdn.net/adreammaker/article/details/134622792

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_13833.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注