本文介绍: 大家好,我是微学AI,今天给大家介绍一下深度学习技巧应用30-深度学习中的GPU的基本架构原理与应用技巧,GPU是一种专门用于处理大量并行操作的硬件设备,它的架构设计主要是为了图形渲染。然而,由于其并行处理能力,现在广泛应用于深度学习、科学计算等领域。主要的GPU制造商如NVIDIA和AMD,GPU(图形处理单元)的架构原理和应用技巧是一个广泛且复杂的主题,本文章将提供一个简明扼要的概述。
大家好,我是微学AI,今天给大家介绍一下深度学习技巧应用30-深度学习中的GPU的基本架构原理与应用技巧,GPU是一种专门用于处理大量并行操作的硬件设备,它的架构设计主要是为了图形渲染。然而,由于其并行处理能力,现在广泛应用于深度学习、科学计算等领域。主要的GPU制造商如NVIDIA和AMD,GPU(图形处理单元)的架构原理和应用技巧是一个广泛且复杂的主题,本文章将提供一个简明扼要的概述。
一、GPU架构原理:
对于GPU的制造商如NVIDIA和AMD,都有自己独特的架构设计,例如NVIDIA的Turing、Ampere架构,AMD的RDNA架构等。这些架构主要由多个流处理器(Streaming Multiprocessor, SM)组成,每个SM又包含多个CUDA核心或者流处理器(Streaming Processor, SP)。这些都是非常重要的GPU架构,我会尽量简洁明了地介绍它们的主要特点和差异。
1.NVIDIA Turing 架构:
Turing是NVIDIA在2018年推出的架构,是世界上第一个实现光线追踪的消费级GPU架构。它引入了RT(Ray Tracing)核心,可以实时进行光线追踪渲染,相较于前代Pascal架构在图形渲染上有了质的飞跃。另外,Turing架构还引入了Tensor核心,专门用于加速深度学习和AI工作负载。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。