本文介绍: 此时区间变为[0,4],既保证了下标为4的2保留在区间里,又保证可以继续查找[0,4]中是否还有数字2,如果[0,3]中没有数字2了,则下标4就会是该区间唯一一个满足条件的值,也就会是最终结果。而如果[0,3]中还有其他的2,就如本例,那么下标为4的数字就会被下一次小区间所抛弃。另一种退出循环方式就是l>r,l跑到r的右边,那么不管怎么说,l都不可能是最终目标判断r是否是x:如果退出循环a[r]==x说明找到了x,并且这个x是左边界的x接下来 q行,每行包含一个整数 k,表示一个询问元素

二分

一、整数二分

(一)整数二分思路

在这里插入图片描述

(二)整数二分算法模板

在这里插入图片描述

1.左查找(寻找左侧边界)

​ 因此,我们需要向左缩小区

void query_l(int a)
{
    int l=0,r=n-1;
    while(l<r)
    {
        int mid=(l+r)/2;
        if(arr[mid]==a)		r=mid;
        else if(arr[mid]>a)	r=mid-1;
        else				l=mid+1;
    }
    if(arr[l]==a)	cout<<r<<" ";
    else cout<<-1<<" ";
}

我们可以将等于和大于的情况合二为一,因为不管怎样最终都是要判断r是否目标值的。所以,升级后的代码如下。

void query_l(int a)
{
    int l=0,r=n-1;
    while(l<r)
    {
        int mid=(l+r)/2;
        if(arr[mid]>=a)	r=mid;
        else l=mid+1;
    }
    if(arr[l]==a)	cout<<r<<" ";
    else	cout<<-1<<" ";
}
2.右查找(寻找右侧边界)
  • 查找就是要找到最后出现的值,不断向右缩小区间分析过程与左查找类似。
  • 需要注意的一点,右查找和左查找确定mid值的方式不同。左查找采用(l+r)/2向下取整的方式,右查找采用(l+r+1)/2向上取整的方式
  • 原因分析
  • 对于左查找:假设l=2,r=3,向下取整得到的mid=(2+3+1)/2=3,若取r=mid,那么l和r任保持原值不变,陷入死循环
  • 对于右查找:假设l=2,r=3,向下取整得到mid=(2+3)/2=2。若取l=mid,那么l和r任保持原值不变,陷入死循环。
    在这里插入图片描述
void query_r(int a)
{
    int l=0,r=n-1;
    while(l<r)
    {
        int mid=(l+r+1)/2;
        if(arr[mid]<=a)	l=mid;
        else			r=mid-1;
    }
    if(arr[r]==a)	cout<<r;
    else	cout<<-1;
}
3.总模板
bool check(int x) {/* ... */} // 检查x是否满足某种性质

// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用
int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;    // check()判断mid是否满足性质
        else l = mid + 1;
    }
    return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用
int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

(三)题目:数的范围

给定一个按照升序排列长度为 n的整数数组,以及 q个查询。对于每个查询,返回一个元素 k的起始位置终止位置(位置从 0开始计数)。如果数组中不存在元素,则返回 -1 -1。

输入格式
第一行包含整数 n和 q,表示数组长度和询问个数

第二行包含 n个整数(均在 1∼10000范围内),表示完整数组。

接下来 q行,每行包含一个整数 k,表示一个询问元素

输出格式
共 q行,每行包含两个整数,表示所求元素的起始位置和终止位置。
如果数组中不存在元素,则返回 -1 -1。

数据范围
1≤n≤100000
1≤q≤10000
1≤k≤10000

输入样例

6 3
1 2 2 3 3 4
3
4
5

输出样例

3 4
5 5
-1 -1
#include<iostream>
using namespace std;
const int N = 100010;

int n,m;
int q[N];

int main()
{
	scanf("%d %d",&amp;n,&amp;m);
	for(int i=0;i<n;i++)
		scanf("%d",&amp;q[i]);
	
	while(m--)
	{
		int x;
		scanf("%d",&amp;x);
		int l=0,r=n-1;
		while(l<r)
		{
			int mid=(l+r)/2;
			if(q[mid]>=x)
				r=mid;
			else l=mid+1;
		}
		if(q[l]!=x)
			cout<<"-1 -1"<<endl;
		else
		{
			cout<<l<<" ";
			int l=0,r=n-1;
			while(l<r)
			{
				int mid=(l+r+1)/2;
				if(q[mid]<=x)
					l=mid;
				else
					r=mid-1;
			}
			cout<<l<<endl;
		}
		
	}
	return 0;
}

二、浮点数二分

(一)浮点数二分思路

思路和整数二分一样,区别是浮点型二分不需要注意边界问题(也就是不需要+1)

(二)浮点数二分算法模板

bool check(double x) {/* ... */} // 检查x是否满足某种性质

double bsearch_3(double l, double r)
{
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求
    while (r - l > eps)
    {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

(三)题目:数的三次方根

题目描述

给定一个点数n,求它的三次方根。

输入格式
一行包含一个浮点数n。

输出格式
一行包含一个浮点数,表示问题的解。

注意,结果保留6位小数。

数据范围
−10000≤n≤10000

输入样例

1000.00

输出样例

10.000000
#include<iostream>
using namespace std;
int main()
{
    double x;
    cin>>x;
    double l=-100,r=100;//根据题目范围 开三次方根 估计答案大概范围
    while(r-l>1e-8)
    {
        double mid=(l+r)/2;
        if(mid*mid*mid>=x)
            r=mid;
        else
            l=mid;
    }
    printf("%.6lfn",l);
    return 0;
}

原文地址:https://blog.csdn.net/m0_73841621/article/details/134722226

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_14637.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注