在Hologres中支持行存、列存和行列共存三种存储格式,不同的存储格式适用于不同的场景。
在建表时通过设置orientation属性指定表的存储格式:
列存:
技术原理:
如果表是列存,那么数据将会按照列的形式存储。列存默认使用ORC格式,采用各种类型的Encoding算法(如RLE、字典编码等)对数据进行编码,并且对编码后的数据应用主流压缩算法(如Snappy、 Zlib、 Zstd、 Lz4等)对数据进一步进行压缩,并结合Bitmap index、延迟物化等机制,提升数据的存储和查询效率。
系统会为每张表在底层存储一个主键索引文件,详情请参见主键Primary Key。列存表如果设置了主键PK,系统会自动生成一个Row Identifier(RID),用于快速定位整行数据,同时如果为查询的列设置合适的索引(如Distribution Key、Clustering Key等),那么就可以通过索引快速定位到数据所在的分片和文件,从而提升查询性能,因此列存的适用范围更广,通常用于OLAP查询的场景。
列存—-OLAP场景
建表语法
**
行存:
如果Hologres的表设置的是行存,那么数据将会按照行存储。行存默认使用SST格式,数据按照Key有序分块压缩存储,并且通过Block Index、Bloom Filter等索引,以及后台Compaction机制对文件进行整理,优化点查查询效率。
(推荐)设置主键Primary Key
系统会为每张表在底层存储一个主键索引文件,详情请参见主键Primary Key。行存表设置了Primary Key(PK)的场景,系统会自动生成一个Row Identifier(RID),RID用于定位整行数据,同时系统也会将PK设置为Distribution Key和Clustering Key,这样就能快速定位到数据所在的Shard和文件,在基于主键查询的场景上,只需要扫描一个主键就能快速拿到所有列的全行数据,提升查询效率,
行存主要针对点查的使用场景;
(不建议使用)设置的PK和Clustering Key不一致
但如果在建表时,设置表为行存表,且将PK和Clustering Key设置为不同的字段,查询时,系统会根据PK定位到Clustering Key和RID,再通过Clustering Key和RID快速定位到全行数据,相当于扫描了两次,有一定的性能牺牲,SQL示例如下。
综上:行存表非常适用于基于PK的点查场景,能够实现高QPS的点查。同时建表时建议只设置PK,系统会自动将PK设置为Distribution Key和Clustering Key,以提升查询性能。不建议将PK和Clustering Key设置为不同的字段,设置为不同的字段会有一定的性能牺牲。