本文介绍: 树与二叉树的基本概念

目录

1 树概念及结构

1.1 树的概念

1.3 树的存储 

2 二叉树的概念及结构

2.1 概念

2.2  特殊的二叉树

2.3 二叉树的性质

2.4 二叉树的存储结构


1 树概念及结构

1.1 树的概念

树是一种线性数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。树有以下三个比较显著的特征:

  • 有一个特殊的结点,称为根结点,根节点没有前驱结点
  • 除根节点外,其余结点被分成M(M&gt;0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 树是递归定义

注意: 树形结构中,子树之间不能有交集,否则就不是树形结构

1.2 树的相关概念 

  • 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
  • 节点终端节点:度为0的节点称为叶节点; 如上图:BCHI…等节点为叶节点
  • 终端节点或分支节点:度不为0的节点; 如上图:DEFG…等节点为分支节点
  • 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:AB的父节点
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:BA的孩子节点
  • 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:BC是兄弟节点
  • 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  • 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
  • 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:HI互为兄弟节点
  • 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
  • 森林:由mm&gt;0)棵互不相交的树的集合称为森林;

1.3 树的存储 

树结构相对线性表逻辑欢喜复杂很多,需要保存值域,也要保存结点和结点之间的关系。所以不能以存储线性表的逻辑去看待树的存储

实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。

下图是一种最为直白的表示方式,即对于每一个节点,结构内定义多个孩子指针指向子节点。下列的每个指针也可以用一个指针数组来维护。但是由于孩子节点的数目是浮动变化的,这样做其实会造成很多资源的浪费。

如果明确了树的度,那么确实可以使用这种方法,但是由于每个节点的度并不一定一致,会造成很多资源的浪费。

可以使用顺序表代替静态数组来解决上述问题,但即使使用顺序表,树的整个结构仍然过于繁琐。并不便于执行相关的操作

应用比较广泛的是左孩子右兄弟表示法,即每个结点结构内控制指针只有两个。一个指针永远指向其每个孩子中最左边的孩子(树形逻辑结构中最左边的孩子),而另一个指针指向它右边第一个兄弟结点。

typedef int DataType;
struct Node
{
 struct Node* _firstChild1; // 第一个孩子结点
 struct Node* _pNextBrother; // 指向其下一个兄弟结点
 DataType _data; // 结点中的数据域
};

2 二叉树概念及结构

2.1 概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从上图可以很明显的看出: 

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序

2.2  特殊的二叉树

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是 2^k-1,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.3 二叉树的性质

二叉树有如下一些重要的性质:

  1. 若规定根节点的层数为1,则一棵非空二叉树的i层上最多有2^(i-1)个结点.
  2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1
  3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0, 度为2的分支结点个数为n2,则有n0=n2+1
  4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度h=log2(n+1)
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对 于序号为i的结点有:

              i&gt;0i位置节点的双亲序号:(i-1)/2i=0i为根节点编号,无双亲节点;

              2i+1<n,左孩子序号:2i+1,若2i+1&gt;=n则无左孩子;

              2i+2<n,右孩子序号:2i+2,若2i+2&gt;=n则无右孩子

2.4 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

顺序存储
顺序结构存储就是使用数组来存储
,一般使用数组
只适合表示完全二叉树
,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺
序存储在物理上是一个数组,在逻辑上是一颗二叉树。

链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。
通常的方法是:链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址
链式结构又分为二叉链和三叉链。三叉链比较复杂,在高阶数据结构如红黑树等会用到三叉链。

原文地址:https://blog.csdn.net/fbzhl/article/details/134615533

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_1527.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注