本文介绍: 【代码】LeetCode797. All Paths From Source to Target

一、题目

Given a directed acyclic graph (DAG) of n nodes labeled from 0 to n – 1, find all possible paths from node 0 to node n – 1 and return them in any order.

The graph is given as follows: graph[i] is a list of all nodes you can visit from node i (i.e., there is a directed edge from node i to node graph[i][j]).

Example 1:

Input: graph = [[1,2],[3],[3],[]]
Output: [[0,1,3],[0,2,3]]
Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Example 2:

Input: graph = [[4,3,1],[3,2,4],[3],[4],[]]
Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]

Constraints:

n == graph.length
2 <= n <= 15
0 <= graph[i][j] < n
graph[i][j] != i (i.e., there will be no selfloops).
All the elements of graph[i] are unique.
The input graph is guaranteed to be a DAG.

二、题解

class Solution {
public:
    vector<vector<int&gt;&gt; res;
    vector<int&gt; path;
    void dfs(vector<vector<int>>&amp; graph,int x){
        if(x == graph.size() - 1){
            res.push_back(path);
            return;
        }
        for(int i = 0;i < graph[x].size();i++){
            path.push_back(graph[x][i]);
            dfs(graph,graph[x][i]);
            path.pop_back();
        }
    }
    vector<vector<int>> allPathsSourceTarget(vector<vector<int>>&amp; graph) {
        path.push_back(0);
        dfs(graph,0);
        return res;
    }
};

原文地址:https://blog.csdn.net/weixin_46841376/article/details/134686763

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_16137.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注