基于WiFi研究的萌新可以系统学习大神总结如下内容
https://github.com/Marsrocky/Awesome-WiFi-CSI-Sensing

一、概述

本Demo无需机器学习模型,Demo功能涉及的理论主要参考硕士学位论文基于WiFi的人体行为感知技术研究》,作者南京邮电大学的朱XX,本人用python复现论文中呼吸频率检测的功能。Demo实现呼吸速率检测的主要过程为:

采数用的是C代码

1、通过shell脚本循环执行C代码进行csi数据采集,形成一个个30秒的csi数据文件(.dat数据);

解析分析数据用python代码

2、读取最新的.dat数据文件解析csi数据;
3、计算csi的振幅和相位,并对相位数据进行校准
4、对振幅和相位数据进行中值滤波
5、基于EMD 算法滤波
6、基于FFT进行子载波筛选
7、基于CA-CFAR 寻峰算法进行寻峰和呼吸速率统计

二、操作内容

1、配置好采数设备代码运行环境参考本人记录
https://blog.csdn.net/Acecai01/article/details/129442761

2、布设试验场景
在这里插入图片描述
3、选择一台发射数据的设备输入如下发数据的命令

xxx:~$: cd ~
xxx:~$: rfkill unblock wifi
xxx:~$: iwconfig
xxx:~$: sudo bash ./inject.sh wlan0 64 HT20
xxx:~$: echo 0x1c113 | sudo tee `sudo find /sys -name monitor_tx_rate`
xxx:~$: cd linux-80211n-csitool-supplementary/injection/
xxx:xxx$: sudo ./random_packets 1000000000 100 1 10000

以上命令的含义,参考本大节第1步骤配置记录博客
此时设备会按每秒100个数据帧的速率持续发送数据,以上命令设置发送数据量够发115天,要中断发送直接按ctrl+c即可

4、选择一台接收数据的设备,将本人修改的采数C代码log_to_file.c替换掉原先的log_to_file.c,先看修改后的log_to_file.c

/*
 * (c) 2008-2011 Daniel Halperin <dhalperi@cs.washington.edu&gt;
 */
#include "iwl_connector.h"

#include <stdio.h&gt;
#include <stdlib.h&gt;
#include <string.h&gt;
#include <signal.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <linux/netlink.h>

#define MAX_PAYLOAD 2048
#define SLOW_MSG_CNT 100

int sock_fd = -1; // the socket
FILE *out = NULL;

void check_usage(int argc, char **argv);

FILE *open_file(char *filename, char *spec);

void caught_signal(int sig);

void exit_program(int code);
void exit_program_err(int code, char *func);
void exit_program_with_alarm(int sig);

int main(int argc, char **argv)
{
	/* Local variables */
	struct sockaddr_nl proc_addr, kern_addr; // addrs for recv, send, bind
	struct cn_msg *cmsg;
	char buf[4096];
	int ret;
	unsigned short l, l2;
	int count = 0;

	/* Initialize signal*/
	signal(SIGALRM, exit_program_with_alarm);

	/* Make sure usage is correct */
	check_usage(argc, argv);

	/* Open and check log file */
	out = open_file(argv[1], "w");

	/* Setup the socket */
	sock_fd = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);
	if (sock_fd == -1)
		exit_program_err(-1, "socket");

	/* Initialize the address structs */
	memset(&amp;proc_addr, 0, sizeof(struct sockaddr_nl));
	proc_addr.nl_family = AF_NETLINK;
	proc_addr.nl_pid = getpid(); // this process' PID
	proc_addr.nl_groups = CN_IDX_IWLAGN;
	memset(&amp;kern_addr, 0, sizeof(struct sockaddr_nl));
	kern_addr.nl_family = AF_NETLINK;
	kern_addr.nl_pid = 0; // kernel
	kern_addr.nl_groups = CN_IDX_IWLAGN;

	/* Now bind the socket */
	if (bind(sock_fd, (struct sockaddr *)&amp;proc_addr, sizeof(struct sockaddr_nl)) == -1)
		exit_program_err(-1, "bind");

	/* And subscribe to netlink group */
	{
		int on = proc_addr.nl_groups;
		ret = setsockopt(sock_fd, 270, NETLINK_ADD_MEMBERSHIP, &amp;on, sizeof(on));
		if (ret)
			exit_program_err(-1, "setsockopt");
	}

	/* Set up the "caught_signal" function as this program's sig handler */
	signal(SIGINT, caught_signal);

	/* Poll socket forever waiting for a message */
	while (1)
	{
		/* Receive from socket with infinite timeout */
		ret = recv(sock_fd, buf, sizeof(buf), 0);
		if (ret == -1)
			exit_program_err(-1, "recv");
		/* Pull out the message portion and print some stats */
		cmsg = NLMSG_DATA(buf);
		if (count % SLOW_MSG_CNT == 0)
			printf("received %d bytes: counts: %d id: %d val: %d seq: %d clen: %dn", cmsg->len, count, cmsg->id.idx, cmsg->id.val, cmsg->seq, cmsg->len);
		/* Log the data to file */
		l = (unsigned short)cmsg->len;
		l2 = htons(l);
		fwrite(&amp;l2, 1, sizeof(unsigned short), out);
		ret = fwrite(cmsg->data, 1, l, out);
		++count;
		if (count == 1)
		{
			/* Set alarm */
			/*alarm((*argv[2] - '0')); */
            alarm(atoi(argv[2]));
		}
		if (ret != l)
			exit_program_err(1, "fwrite");
	}

	exit_program(0);
	return 0;
}

void check_usage(int argc, char **argv)
{
	if (argc != 3)
	{
		fprintf(stderr, "Usage: %s <output_file> <time>n", argv[0]);
		exit_program(1);
	}
}

FILE *open_file(char *filename, char *spec)
{
	FILE *fp = fopen(filename, spec);
	if (!fp)
	{
		perror("fopen");
		exit_program(1);
	}
	return fp;
}

void caught_signal(int sig)
{
	fprintf(stderr, "Caught signal %dn", sig);
	exit_program(0);
}

void exit_program(int code)
{
	if (out)
	{
		fclose(out);
		out = NULL;
	}
	if (sock_fd != -1)
	{
		close(sock_fd);
		sock_fd = -1;
	}
	exit(code);
}

void exit_program_err(int code, char *func)
{
	perror(func);
	exit_program(code);
}

void exit_program_with_alarm(int sig)
{
	exit_program(0);
}

修改后的采数C代码可以实现自定义设定采数时长,时间参数单位为秒,可以设置10秒以上的数值
该采数代码所在目录是:
~/linux-80211n-csitool-supplementary/netlink/
接着是编译该采数代码

xxx:~$: cd ~
xxx:~$: cd linux-80211n-csitool-supplementary/netlink/
xxx:xxx$: make

编译后,当前目录生成一个名为log_to_file的可执行文件,后面执行该文件(本文会用shell脚本执行该文件)即可采数。

5、接着在采数设备执行启动采数模式命令

xxx:~$: cd ~
xxx:~$: sudo bash ./monitor.sh wlan0 64 HT20

执行上述命令后开始出现如下大片错误无需关注最后会正常启动采数监听模式

xxx@xxx:~$ sudo bash ./monitor.sh wlan0 64 HT20
[sudo] password for xxx: 
stop: Unknown instance: 
Bringing wlan0 down......
down: error fetching interface information: Device not found
wlan0: ERROR while getting interface flags: No such device
...
wlan0: ERROR while getting interface flags: No such device
Set wlan0 into monitor mode......
Bringing wlan0 up......
Set channel 64 HT20...
xxx@xxx:~$ 

6、在采数设备上执行循环采数的shell脚本shell脚本make_data.sh内容如下

#!/bin/bash
# 存放数据的路径
org_p="/home/clife/csi_data/"
# 清空放数据的目录
dl=`rm -rf  ${org_p}*`

for i in {0..1000};
do
    echo "第${i}次采数"
    # 用整数命名数据文件
    fl_p="${org_p}${i}.dat"
    # 每采集30秒生成一个数据文件
    cais=`/home/clife/linux-80211n-csitool-supplementary/netlink/log_to_file $fl_p 30`
done

接着执行该shell脚本启动采数:

xxx:xxx$: chmod +777 ./make_data.sh
xxx:xxx$: sudo ./make_data.sh

7、在采数设备上执行读取数据分析python代码respiration_online.py,respiration_online.py内容为:

# -*-coding:utf-8-*-
# -*-coding:utf-8-*-
import os
import time
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
# csi各种处理,参考宝藏工具https://github.com/citysu/csiread
import csiread  # csiread/examples/csishow.py这里好多处理csi的基本操作处理幅值和相位等等
import scipy.signal as signal
from PyEMD import EMD  #pip install EMD-signal
from scipy.fftpack import fft

# -----------------------------------------------求振幅和相位
# 参考:https://github.com/citysu/csireadutils.py和csishow.py
def scidx(bw, ng, standard='n'):
    """subcarriers index

    Args:
        bw: bandwitdh(20, 40, 80)
        ng: grouping(1, 2, 4)
        standard: 'n' - 802.11n, 'ac' - 802.11ac.
    Ref:
        1. 802.11n-2016: IEEE Standard for Information technology—Telecommunications
        and information exchange between systems Local and metropolitan area
        networks—Specific requirements - Part 11: Wireless LAN Medium Access
        Control (MAC) and Physical Layer (PHY) Specifications, in
        IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), vol., no.,
        pp.1-3534, 14 Dec. 2016, doi: 10.1109/IEEESTD.2016.7786995.
        2. 802.11ac-2013 Part 11: ["IEEE Standard for Information technology--
        Telecommunications and information exchange between systemsLocal and
        metropolitan area networks-- Specific requirements--Part 11: Wireless
        LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications
        --Amendment 4: Enhancements for Very High Throughput for Operation in
        Bands below 6 GHz.," in IEEE Std 802.11ac-2013 (Amendment to IEEE Std
        802.11-2012, as amended by IEEE Std 802.11ae-2012, IEEE Std 802.11aa-2012,
        and IEEE Std 802.11ad-2012) , vol., no., pp.1-425, 18 Dec. 2013,
        doi: 10.1109/IEEESTD.2013.6687187.](https://www.academia.edu/19690308/802_11ac_2013)
    """

    PILOT_AC = {
        20: [-21, -7, 7, 21],
        40: [-53, -25, -11, 11, 25, 53],
        80: [-103, -75, -39, -11, 11, 39, 75, 103],
        160: [-231, -203, -167, -139, -117, -89, -53, -25, 25, 53, 89, 117, 139, 167, 203, 231]
    }
    SKIP_AC_160 = {1: [-129, -128, -127, 127, 128, 129], 2: [-128, 128], 4: []}
    AB = {20: [28, 1], 40: [58, 2], 80: [122, 2], 160: [250, 6]}
    a, b = AB[bw]

    if standard == 'n':
        if bw not in [20, 40] or ng not in [1, 2, 4]:
            raise ValueError("bw should be [20, 40] and ng should be [1, 2, 4]")
        k = np.r_[-a:-b:ng, -b, b:a:ng, a]
    if standard == 'ac':
        if bw not in [20, 40, 80] or ng not in [1, 2, 4]:
            raise ValueError("bw should be [20, 40, 80] and ng should be [1, 2, 4]")

        g = np.r_[-a:-b:ng, -b]
        k = np.r_[g, -g[::-1]]

        if ng == 1:
            index = np.searchsorted(k, PILOT_AC[bw])
            k = np.delete(k, index)
        if bw == 160:
            index = np.searchsorted(k, SKIP_AC_160[ng])
            k = np.delete(k, index)
    return k

def calib(phase, k, axis=1):
    """Phase calibration

    Args:
        phase (ndarray): Unwrapped phase of CSI.
        k (ndarray): Subcarriers index
        axis (int): Axis along which is subcarrier. Default: 1

    Returns:
        ndarray: Phase calibrated

    ref:
        [Enabling Contactless Detection of Moving Humans with Dynamic Speeds Using CSI]
        (http://tns.thss.tsinghua.edu.cn/wifiradar/papers/QianKun-TECS2017.pdf)
    """
    p = np.asarray(phase)
    k = np.asarray(k)

    slice1 = [slice(None, None)] * p.ndim
    slice1[axis] = slice(-1, None)
    slice1 = tuple(slice1)
    slice2 = [slice(None, None)] * p.ndim
    slice2[axis] = slice(None, 1)
    slice2 = tuple(slice2)
    shape1 = [1] * p.ndim
    shape1[axis] = k.shape[0]
    shape1 = tuple(shape1)

    k_n, k_1 = k[-1], k[0]   # 这里本人做了修改,将k[1]改成k[0]了
    a = (p[slice1] - p[slice2]) / (k_n - k_1)
    b = p.mean(axis=axis, keepdims=True)
    k = k.reshape(shape1)

    phase_calib = p - a * k - b
    return phase_calib

# -----------------------------------------------EMD分解,去除高频噪声
# 参考:https://blog.csdn.net/fengzhuqiaoqiu/article/details/127779846
# 参考:基于WiFi的人体行为感知技术研究(南京邮电大学的一篇硕士论文
def emd_and_rebuild(s):
    '''对信号s进行emd分解,去除前2个高频分量后,其余分量相加重建新的低频信号'''
    emd = EMD()
    imf_a = emd.emd(s)

    # 去掉前3个高频子信号,合成新低频信号
    new_s = np.zeros(s.shape[0])
    for n, imf in enumerate(imf_a):
        # 注意论文中是去除前2个,本人这里调整为去除前3个高频分量
        if n < 3:  
            continue
        new_s = new_s + imf
    return new_s

# -----------------------------------------------FFT变换筛选子载波
# 参考:https://blog.csdn.net/zhengyuyin/article/details/127499584
# 参考:基于WiFi的人体行为感知技术研究(南京邮电大学的一篇硕士论文
def dft_amp(signal):
    '''求离散傅里叶变换的幅值'''
    # dft后,长度不变,是复数表示,想要频谱图需要取模
    dft = fft(signal)
    dft = np.abs(dft)
    return dft

def respiration_freq_amp_ratio(dft_s, st_ix, ed_ix):
    '''计算呼吸频率范围内的频率幅值之和,与全部频率幅值之和的比值
    dft_s: 快速傅里叶变换后的序列幅值
    st_ix: 呼吸频率下限的序号
    ed_ix: 呼吸频率上限的序号
    '''
    return np.sum(dft_s[st_ix:ed_ix])/np.sum(dft_s)

# ----------------------------------------------------------------------------- 均值恒虚警(CA-CFAR)
# 参考:https://github.com/msvorcan/FMCW-automotive-radar/blob/master/cfar.py
# 参考:基于WiFi的人体行为感知技术研究(南京邮电大学的一篇硕士论文
def detect_peaks(x, num_train, num_guard, rate_fa):
    """
    Parameters
    ----------
    x : signal,numpy类型
    num_train : broj trening celija, 训练单元num_guard : broj zastitnih celija,保护单元数
    rate_fa : ucestanost laznih detekcija,误报率

    Returns
    -------
    peak_idx : niz detektovanih meta
    """
    num_cells = len(x)
    num_train_half = round(num_train / 2)
    num_guard_half = round(num_guard / 2)
    num_side = num_train_half + num_guard_half

    alpha = 0.09 * num_train * (rate_fa ** (-1 / num_train) - 1)  # threshold factor

    peak_idx = []
    for i in range(num_side, num_cells - num_side):

        if i != i - num_side + np.argmax(x[i - num_side: i + num_side + 1]):
            continue

        sum1 = np.sum(x[i - num_side: i + num_side + 1])
        sum2 = np.sum(x[i - num_guard_half: i + num_guard_half + 1])
        p_noise = (sum1 - sum2) / num_train
        threshold = alpha * p_noise

        if x[i] > threshold and x[i] > -20:
            peak_idx.append(i)

    peak_idx = np.array(peak_idx, dtype=int)
    return peak_idx


if __name__ == '__main__':
    fs = 20  # 呼吸数据的采样率,设置为20Hz,数据包速率大于这个数的要进行下采样
    tx_num = 3
    rx_num = 3
    bpm_count_num = rx_num * tx_num * 2 * 10  # 理想情况下需要累加的呼吸速率个数

    is_sample = True   # 是否需要下采样
    sample_gap = 5     # 需要下采样则设置取数间隔

    # data_pt = 'E:/WiFi/test/data/csi_data/'
    data_pt = '/home/clife/csi_data/'

    while True:
        # 由于采数的shell脚本是不断产生30秒的数据文件的,为了不让数据文件撑爆硬盘这里每次进入循环都要先删除多余的数据
        # 文件,留下最新的两个数据文件,因数据文件名是按整数命名且依次递增的,文件名最大两个文件是最新的文件。
        all_fl = sorted([int(item.split('.')[0]) for item in os.listdir(data_pt)])
        if len(all_fl)<2:
            time.sleep(2)
            continue
        for i in range(len(all_fl)-2):
            os.remove(data_pt+str(all_fl[i])+'.dat')
            
        # 取倒数第2个文件而不是最新的文件,可以确保拿到的文件已经采满30秒,而最新的数据文件可能正在写入数据。
        csifile = data_pt + str(all_fl[-2])+'.dat'  
        print('n', csifile)
        
        csidata = csiread.Intel(csifile, nrxnum=rx_num, ntxnum=tx_num, pl_size=10)
        csidata.read()
        csi = csidata.get_scaled_csi()
        print(csi.shape)

        # 等间隔抽样,为了将数据采样成20Hz,比如本人设置的发包率为100,那么sample_gap=5就可以降采样成20Hz
        if is_sample:
            csi = csi[0:-1:sample_gap,:,:,:]  
            print(csi.shape)


        # 振幅和相位计算
        csi_amplitude = np.abs(csi)                    # 求csi值的振幅
        csi_phase = np.unwrap(np.angle(csi), axis=1)   # 求csi值的相位
        csi_phase = calib(csi_phase, scidx(20, 2))     # 校准相位的值
        # print('csi_phase: ', csi_phase[:2, 1, 2, 1])

        # 中值滤波,去除异常
        # 参考:https://blog.csdn.net/qq_38251616/article/details/115426742
        csi_amplitude_filter = np.apply_along_axis(signal.medfilt, 0, csi_amplitude.copy(), 3)   # 中值滤波,窗口必须为奇数,此处窗口为3
        csi_phase_filter = np.apply_along_axis(signal.medfilt, 0, csi_phase.copy(), 3)    # 中值滤波,窗口必须为奇数,此处窗口为3
        # print('csi_phase_filter: ', csi_phase_filter[:2, 1, 2, 1])

        # csi_amplitude_filter = csi_amplitude_filter[0:-1:5, :, :, :]
        # csi_phase_filter = csi_phase_filter[0:-1:5, :, :, :]
        # print(csi_phase_filter.shape)


        # emd分解信号-重建信号
        csi_amplitude_emd = np.apply_along_axis(emd_and_rebuild, 0, csi_amplitude_filter.copy())
        csi_phase_emd = np.apply_along_axis(emd_and_rebuild, 0, csi_phase_filter.copy())
        # print('csi_phase_emd: ', csi_phase_emd[:2, 1, 2, 1])


        # 基于振幅的fft变换筛选子载波,并针对挑选出的子载波进行寻峰和呼吸速率计算
        csi_dft_amp = np.apply_along_axis(dft_amp, 0, csi_amplitude_emd.copy())

        n = csi_dft_amp.shape[0]  # 采样点数
        # 0.15Hz对应dft中值的序号,呼吸频率下限
        l_ix = int(0.15*n/fs)
        # 0.5Hz对应dft中值的序号,呼吸频率上限
        u_ix = int(0.5*n/fs)+1
        # 计算呼吸频率值的占比
        csi_respiration_freq_ratio = np.apply_along_axis(respiration_freq_amp_ratio, 0, csi_dft_amp.copy(),l_ix, u_ix)
        # 针对1发1收对应的30个载波筛选出10个载波,进行呼吸频率计算
        sum_bpm = 0
        bpm_count = 0
        all_respiration_freq_ratio = 0
        for i in range(csi_respiration_freq_ratio.shape[1]):
            for j in range(csi_respiration_freq_ratio.shape[2]):
                temp = np.sort(csi_respiration_freq_ratio[:,i,j])
                for k in range(30):
                    if csi_respiration_freq_ratio[k,i,j] < temp[20]:  # 排名前10的才会进入下面的计算,如果temp[19]==temp[20]就会多出来一个
                        continue

                    amplitude_peak_idx = detect_peaks(csi_amplitude_emd[:, k, i, j].copy(), num_train=20, num_guard=8, rate_fa=1e-3)
                    phase_peak_idx = detect_peaks(csi_phase_emd[:, k, i, j].copy(), num_train=20, num_guard=8, rate_fa=1e-3)
                    amplitude_bpm = 0
                    phase_bpm = 0
                    try:
                        # 基于振幅计算的每秒呼吸次数
                        amplitude_bpm = (len(amplitude_peak_idx)-1)*fs/(amplitude_peak_idx[-1]-amplitude_peak_idx[0])
                        # 基于相位计算的每秒呼吸次数
                        phase_bpm = (len(phase_peak_idx)-1)*fs/(phase_peak_idx[-1]-phase_peak_idx[0])
                        # 呼吸心率必须大于1分钟9次
                        if ~pd.isna(amplitude_bpm) and ~pd.isna(phase_bpm) and amplitude_bpm > 0.15 and phase_bpm > 0.15:
                            sum_bpm = sum_bpm + amplitude_bpm + phase_bpm
                            bpm_count = bpm_count + 2
                            all_respiration_freq_ratio = all_respiration_freq_ratio + csi_respiration_freq_ratio[k,i,j]
                            # print(i, j, k, bpm_count)
                    except:
                        pass
                    # print(i, j, k, amplitude_bpm, phase_bpm)
        mean_respiration_freq_ratio = all_respiration_freq_ratio/bpm_count   # 呼吸频率范围平均频率值
        print(bpm_count_num, bpm_count, round(mean_respiration_freq_ratio,4))
        # 下面的两个阈值针对不同设备自行调整,本人自行采集了几个站位和静坐的数据以及几个无人情况下的数据,进行分析得出
        # 区分有人和无人阈值
        if bpm_count/bpm_count_num > 0.7 and mean_respiration_freq_ratio > 0.03:  
            mean_bpm = sum_bpm / bpm_count
            print('rate :', int(mean_bpm*60), '次/分钟')
        else:
            print('无人!')

以上代码各个功能模块注释了参考出处,需要详细学习的可看参考链接文献

接着是执行该代码,进行持续的呼吸速率检测

xxx:xxx$ /home/clife/anaconda3/bin/python37 respiration_online.py

以上命令中python37是本人设置python.exe的软链接,知道是python即可

三、测试数据

链接https://pan.baidu.com/s/1ZQIQT1bQot3-GOcnILS26g
提取码:1234

四、总结

1、Demo计算本人的呼吸频率大致为21次/分钟,与标准成人的呼吸频率16~24次/分钟比较相符,如果你计算所得频率偏大,可以对数据进行进一步高频滤波(EMD分解后去掉更多高频分量)或者将FFT筛选子载波的频率范围缩小一些,使得最终用于CA-CFAR算法寻峰的载波曲线频率尽可能接近于呼吸信号的频率。
2、借助呼吸速率的计算,本Demo还可以在不同房间实现有人和无人的检测,有人时会给出呼吸速率值,无人则直接打印出无人结果测试case有:站立、坐椅子、坐地上、躺桌子上、躺地上,姿势方向有:平行2个设备连接线、垂直两个设备连接线。除了躺在地上无法检测出呼吸速率显示为无人的误报外,其他情形都可检测出呼吸速率,当人走出房间,显示为无人。多人场景可以检测出呼吸速率。

综上,本Demo检测出的呼吸速率可做参考,调整处理逻辑参数可进一步改善结果,呼吸速率的误差不影响有人和无人的区分(除躺倒在地外),抗干扰能力较强,能适应不同环境

原文地址:https://blog.csdn.net/Acecai01/article/details/130564006

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_17991.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注