本文介绍: NLP 的一个分支,结合了视觉(空间和布局)特征和文档中存在的文本信息。大多数经典的 NLP 问题都处理文本数据,这些数据包含大量信息,但仍然缺乏帮助我们区分文本内容和含义的视觉队列。鉴于我们正处于像 ChatGPT、Bard、Claude 等人工智能LLM时代,它们本质上是多模式的,即接受图像文本作为输入,我们确实看到了这些系统的潜力。转向 Visual NLP 的主要原因之一是需要对扫描文档进行信息提取。目前,IE 活动是通过将扫描文档转换文本并在其上运行 NLP 来进行的。

本文旨在以简单的方式解释 Visual NLP 的关键概念,让你了解 Visual NLP 的含义、它的用例是什么、如何使用它以及为什么它是构建自动提取管道的未来 。

NSDT在线工具推荐: Three.js AI纹理开发包 – YOLO合成数据生成器 – GLTF/GLB在线编辑 – 3D模型格式在线转换 – 可编程3D场景编辑器 

1、什么是Visual NLP?

NLP 的一个分支,结合了视觉(空间和布局)特征和文档中存在的文本信息。 大多数经典的 NLP 问题都处理文本数据,这些数据包含大量信息,但仍然缺乏帮助我们区分文本内容和含义的视觉队列

鉴于我们正处于像 ChatGPT、Bard、Claude 等人工智能LLM时代,它们本质上是多模式的,即接受图像和文本作为输入,我们确实看到了这些系统的潜力。

转向 Visual NLP 的主要原因之一是需要对扫描文档进行信息提取。 目前,IE 活动是通过将扫描文档转换为文本并在其上运行 NLP 来进行的。

现在,让我们看看这种方法的局限性:

  • 由于文本表示不明确(例如清晰度、字体等),OCR 文本识别失败。
  • 使用可能为文本增加价值的视觉图像。
  • 通过 OCR 转换为文本时,表格数据会变得混乱。

添加视觉数据有助于克服此类挑战,并为模型提供丰富的数据,以更好地完成任务。

2、Visual NLP用例

Visual NLP 的一些用例包括:

  • 视觉文档分类使用文本+空间特征+图像)
  • 视觉问答
  • 布局分析:分析文档内容的空间排列以了解其结构和含义的过程。 这包括识别文本、图像、表格和其他元素的位置,以及整体文档结构,例如标题和副标题。
  • 关键信息提取:从文档和其他视觉内容中提取关键信息的过程。 这可以包括姓名、日期、地点和金额等信息。
  • 图像字幕生成图像的文本描述的任务。
  • 表格检测:识别和定位图像和文档中的表格的任务。
  • 表结构识别:识别表的逻辑和物理结构的任务。 表的逻辑结构是指表中不同单元格之间的关系,例如哪些单元格属于同一标题行或列。 表格的物理结构是指表格的布局,例如边框的位置和单元格之间的间距。

下面是如何利用 Visual NLP 力量的一些示例

2.1 从扫描收据中提取关键信息

此任务的目的是从给定收据中提取多个关键字段的文本,并将每个收据图像的文本保存在 json 文件中。 我们对 Donut 模型进行了微调,以从扫描的发票收据中提取公司地址、日期、总计等实体。

事实数据如下:

{     
"company": "BOOK TA .K (TAMAN DAYA) SDN BHD",     
"date": "25/12/2018",     
"address": "NO.53, TAMAN DAYA, 81100 JOHOR BAHRU, JOHOR.",     
"total": "9.00" 
}

模型能够学习直接从图像中提取这些实体。 当考虑真实情况和预测文本完全匹配正确实例时,我们能够获得约 60% 的准确率。

2.2 视觉质量检查

此任务的目的是从图像中生成给定问题的答案。 我们针对此任务对 Donut 模型进行了微调。

事实数据如下所示:

{
"gt_parses": [
  {
    "question": "what is AGE?", 
    "answer": "30"
  }, 
  {
    "question": "what is GENDER?", 
    "answer": "Female"
  }, 
  {
    "question": "what is DATE?", 
    "answer": "2023-01-07"
  }
]
}

模型能够学习直接从图像生成答案

一些可以通过HuggingFace使用的Visual NLP模型

  • Donut
  • Pix2Struct
  • LayoutLM
  • DiT

在上面的示例中,我们使用 Donut 作为起点来展示 Visual NLP 系统功能,但你可以使用上述任何模型

3、基于 Visual NLP 的自动化信息提取流程

上述示例展示了当前 Visual NLP 系统的明显潜力,以及为什么该研究领域将成为自动提取管道的未来。

视觉 NLP 是一个快速发展的领域,有可能彻底改变我们处理和理解信息的方式。 通过结合视觉和文本特征,视觉 NLP 模型可以克服传统 NLP 模型的局限性,从更广泛的来源(包括扫描文档)提取更准确、更全面的信息。

随着视觉 NLP 领域的不断成熟,我们可以期待看到更多创新和突破性的应用程序出现。 例如,视觉 NLP 可用于开发能够理解和索引文本和图像的新搜索引擎,或者创建新型教育工具,通过结合视觉和文本信息来帮助学生更有效地学习


原文链接Visual NLP简明教程 – BimAnt

原文地址:https://blog.csdn.net/shebao3333/article/details/134572309

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_1909.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注