本文介绍: 项目全局范围内,某个类的实例有且仅有一个通过这个实例向其他模块提供数据全局访问,这种模式就叫单例模式。单例模式的典型应用就是任务队列使用单例模式来替代全局变量(对全局变量进行管理),直接使用全局变量会破坏类的封装全局变量随意读写),通过单例模式的类提供的成员函数进行访问单例模式缺点:扩展困难:单例模式中没有抽象层,因此扩展困难,不适用于变化的对象:如果同类型对象总是要在不同的用例场景发生变化,单例就会引起数据错误,不能保存状态

单例模式


项目全局范围内,某个类的实例有且仅有一个通过这个实例向其他模块提供数据全局访问,这种模式就叫单例模式。

单例模式的典型应用就是任务队列使用单例模式来替代全局变量(对全局变量进行管理),直接使用全局变量会破坏类的封装(全局变量随意读写),通过单例模式的类提供的成员函数进行访问

单例模式优点:

  1. 高性能:避免频繁的创建销毁对象,提高性能
  2. 节省内存空间:在内存中只有一个对象节省内存空间,
  3. 避免多重占用:避免对共享资源的多重占用
  4. 全局访问:可全局访问,利用单例模式避免全局变量的出现

单例模式缺点:

  1. 扩展困难:单例模式中没有抽象层,因此扩展困难,

  2. 不适用于变化的对象:如果同类型对象总是要在不同的用例场景发生变化,单例就会引起数据错误,不能保存状态。

  3. 职责过重:违背了单一职责原则

  4. 负面问题

    为了节省资源数据库连接池对象设计为单例类,可能会导致共享连接池对象程序过多,而出现连接池溢出

    如果实例化的单例对象时间不被利用系统会认为是垃圾而被回收,这将导致对象状态的丢失

单利模式使用场景

  1. 需要频繁实例然后销毁的对象
  2. 创建对象耗时过多or消耗资源过多,但又经常使用到的对象,
  3. 有状态的工具类对象,
  4. 频繁访问数据库文件的对象,
  5. 要求只有一个对象的场景

1.单例模式实现

如果使用单例模式,首先要保证这个类的实例有且仅有一个。因此就必须采取一些操作,涉及一个类多对象操作函数有以下几个:

为了把一个可以实例多个对象的路堵死,需要对以上几个函数如下处理

  1. 构造函数私有化,在类内部调用一次这是可控的。
  2. 拷贝构造函数私有化或者禁用(使用 = delete
  3. 拷贝赋值操作符重载函数私有化或者禁用(从单例的语义上讲该函数已经毫无意义,所以在类中不再提供这样一个函数,故将它也一并处理

单例模式就是给类创建一个唯一的实例对象,UML类图如下

在这里插入图片描述

#include<iostream>
using namespace std;
/*
   	1.关于类创建后的默认提供的函数
  	 - 在创建一个新的类之后 会默认提供3个构造函数 1个析构函数
  	 - 2个操作重载移动赋值操作重载、拷贝赋值操作符重载)移动构造函数 拷贝构造函数
  	2.关于单例模式下类的实例化
	 - 在通过将 无参构造函数、拷贝构造函数、拷贝赋值操作符重载函数禁用之后 TaskQueue类已经无法在外部创建任何的对象
	 - 要得到TaskQueue的实例无法通过new操作符得到 只能通过类名得到(需要将对象设置静态对象)
	 - 通过类名访问类内部属性方法属性方法一定是静态的(若不是静态需要通过对象来调用)
	 - 能够操作静态成员变量的函数 只有静态成员函数
*/

//单例模式任务队列
class TaskQueue {
public:
	//无参构造函数
	//TaskQueue() = delete;
	//拷贝构造函数
	TaskQueue(const TaskQueue &t) = delete;
	//赋值操作符重载函数
	TaskQueue& operator=(const TaskQueue &t) = delete;
	// = delete 代表函数禁用, 也可以将其访问权限设置为私有
	
	//静态成员公共函数用于获取实例
	static TaskQueue *getInstance() { return m_taskq; }

	void printTest() { cout << "i am a public method of a singleton class" << endl; }

private:
	//无参构造函数
	TaskQueue() = default;
	//拷贝构造函数
	//TaskQueue(const TaskQueue &amp;t) = default;
	//赋值操作符重载函数
	//TaskQueue&amp; operator=(const TaskQueue &amp;t) = default;
	//通过类名访问静态属性方法创建类实例(需要在类外部初始化处理
	static TaskQueue *m_taskq;
};

//静态成员初始化放到类外部处理
TaskQueue* TaskQueue::m_taskq = new TaskQueue;

int main() {
	//获取TaskQueue的单例对象 由m_taskq指针指向
	TaskQueue* m_taskq = TaskQueue::getInstance();
	//由m_taskq指针调用单例类内部的成员方法
	m_taskq-&gt;printTest();
	return 0;
}

以上为单例模式中的饿汉模式,在定义单例类的时候就将类对应的单例对象一并创建出来了。

2.饿汉与懒汉

在实现一个单例模式的类的时候,有两种处理模式:

(1)饿汉模式
  1. 多个线程在访问单例对象时,没有线程安全问题,单例对象已经存在,不会出现多个线程创建出多个单例对象的情况。
  2. 多线程拿到单例对象后,在访问单例对象内部数据时,有线程安全问题(多线程共享资源),
//饿汉模式
class TaskQueue {
public:
	TaskQueue(const TaskQueue &amp;t) = delete;
	TaskQueue&amp; operator=(const TaskQueue &amp;t) = delete;
	static TaskQueue *getInstance() { return m_taskq; }
	void printTest() { cout << "i am a public method of a singleton class" << endl; }

private:
	TaskQueue() = default;
	static TaskQueue *m_taskq;
};

TaskQueue* TaskQueue::m_taskq = new TaskQueue;
//饿汉模式
class TaskQueue {
public:
	TaskQueue(const TaskQueue &amp;t) = delete;
	TaskQueue&amp; operator=(const TaskQueue &amp;t) = delete;
	static TaskQueue *getInstance() { return &amp;m_taskq; }
	void printTest() { cout << "i am a public method of a singleton class" << endl; }

private:
	TaskQueue() = default;
	static TaskQueue m_taskq;//已经创建对象
};

TaskQueue* TaskQueue::m_taskq;//改为对象声明
(2)懒汉模式
//懒汉模式
class TaskQueue {
public:
	TaskQueue(const TaskQueue &amp;t) = delete;
	TaskQueue&amp; operator=(const TaskQueue &amp;t) = delete;
	static TaskQueue *getInstance() {
		if (m_taskq == nullptr) m_taskq = new TaskQueue;
		return m_taskq;
	}
	void printTest() { cout << "i am a public method of a singleton class" << endl; }

private:
	TaskQueue() = default;
	static TaskQueue *m_taskq;
};

TaskQueue* TaskQueue::m_taskq = nullptr;

3.懒汉线程安全1

在单例模式中饿汉模式下,针对多线程中可能存在的线程安全问题(创建多个实例),进行问题修改

(1)引入互斥

多线程环境下,有可能的情况是:多个线程同时进入getInstance()方法中的if语句判断中,这时对象就可能被同时创建多个,

//懒汉模式 引入互斥
class TaskQueue {
public:
	TaskQueue(const TaskQueue &amp;t) = delete;
	TaskQueue& operator=(const TaskQueue &t) = delete;
	static TaskQueue *getInstance() {
		m_mutex.lock();
		if (m_taskq == nullptr) m_taskq = new TaskQueue;
		m_mutex.unlock();
		return m_taskq;
	}
	void printTest() { cout << "i am a public method of a singleton class" << endl; }

private:
	TaskQueue() = default;
	static TaskQueue *m_taskq;
	static mutex m_mutex;
};

mutex TaskQueue::m_mutex;
TaskQueue* TaskQueue::m_taskq = nullptr;

使用互斥锁对new操作创建实例时进行加锁操作,防止同时创建多个实例,但是程序执行的效率太低(多线程访问单例对象时都是顺序访问)

(2)引入双重检查锁定

双重检查锁定,只有第一次访问时是顺序执行的,在TaskQueue被实例化出来之后,其他线程再去访问单例对象就是并行的了(不会进入if内)。

//懒汉模式 引入双重检查锁定
class TaskQueue {
public:
	TaskQueue(const TaskQueue &t) = delete;
	TaskQueue& operator=(const TaskQueue &t) = delete;
	static TaskQueue *getInstance() {
		//双重检查锁定
		if (m_taskq == nullptr) {
			m_mutex.lock();
			if (m_taskq == nullptr) m_taskq = new TaskQueue;
			m_mutex.unlock();	
		}
		return m_taskq;
	}
	void printTest() { cout << "i am a public method of a singleton class" << endl; }

private:
	TaskQueue() = default;
	static TaskQueue *m_taskq;
	static mutex m_mutex;
};

mutex TaskQueue::m_mutex;
TaskQueue* TaskQueue::m_taskq = nullptr;
(3)引入原子变量

通过引入双重检查锁定的方式解决了在懒汉模式下多线程访问单例对象时,出现的线程安全问题,

表面上观察引入双重检查锁定的方式是十分完美的,但是从底层上依旧存在漏洞

  1. 对于 m_taskq = new TaskQueue; 操作,其对应机器指令并不是一条,而有三条(对于计算机来说代码都是二进制指令/机器指令),

    step1:创建一块内存(没有数据step2:创建 TaskQueue 类型的对象,并将数据写入到对象中
    step3:为 m_taskq 对象指针初始化,将有效的内存地址传递给 m_taskq 对象指针
    
  2. 在实际的执行过程中,m_taskq = new TaskQueue; 对应机器指令可能会被重新排序成为

    step1:创建一块内存(没有数据step3:为 m_taskq 对象指针初始化,将有效的内存地址传递给 m_taskq 对象指针
    step2:创建 TaskQueue 类型的对象,并将数据写入到对象中
    
  3. 如果线程A执行完成前两步之后失去CPU时间片被挂起,此时线程B在进行指针判断时,发现指针 m_taskq 为空(但该指针指向内存没有被初始化),导致线程B使用了一个没有被初始化的队列对象,就会出现问题(出现问题是概率性的)

  4. 在C++11中引入原子变量 atomic,在底层控制机器指令的执行顺序可以实现一种更加安全的懒汉模式,代码如下

    使用原子变量 atomicstore() 方法来存储单例对象,使用 load() 方法来加载单例对象,

    在原子变量中这两个函数在处理指令的时候,默认的原子顺序memory_order_seq_cst 顺序原子操作,

    使用顺序约束原子操作库,整个函数的执行都将保证顺序执行,并且不会出现数据竞态 data races,

    缺点:使用这种方法实现的懒汉模式的单例执行效率更低一些,

    代码进行以下修改:

    • 通过原子变量将类的实例对象保存起来(m_taskq 指针指向的内存)

    • 类外初始化 指针指向nullptr

    • 对 getInstance 方法进行相关的修改操作

      多线层在调用 getInstance 方法时 需要从原子变量中加载任务队列的实例

      抢到互斥锁的线程将继续向下执行 创建实例对象

//懒汉模式 引入原子变量
class TaskQueue {
public:
	TaskQueue(const TaskQueue &t) = delete;
	TaskQueue& operator=(const TaskQueue &t) = delete;
	static TaskQueue *getInstance() {
		TaskQueue* taskq = m_taskq.load();
		if (taskq == nullptr) {
			m_mutex.lock();
			taskq = m_taskq.load();
			if (taskq == nullptr) {
				taskq = new TaskQueue;
				m_taskq.store(taskq);
			}
			m_mutex.unlock();
		}
		return m_taskq.load();
	}
	void printTest() { cout << "i am a public method of a singleton class" << endl; }

private:
	TaskQueue() = default;
	// static TaskQueue *m_taskq;
	static atomic<TaskQueue*> m_taskq;
	static mutex m_mutex;
	
};

mutex TaskQueue::m_mutex;
atomic<TaskQueue*> TaskQueue::m_taskq;
// TaskQueue* TaskQueue::m_taskq = nullptr;

4.懒汉线程安全2

在懒汉模式线程安全问题中,除了可以通过引入双重检查锁定来解决线程安全问题,还可以使用局部静态对象处理线程安全问题,

(1)设置局部静态对象

使用静态的局部对象解决线程安全问题,要求编译器必修支持C++11标准

  1. getInstance() 局部数中定义一个静态局部对象 static TaskQueue taskq; (调用无参构造初始化)
  2. 在C++11标准中规定,如果指令逻辑进入一个未被初始化的声明变量,所有并发执行应当等待该变量完成初始化,

注:使用静态的局部对象没有线程安全问题,已经由C++11标准中的编译器解决,未被初始化的变量,必须等待其完成初始化才能并发执行,

step1:创建一块内存(没有数据)
step2:创建 TaskQueue 类型的对象,并将数据写入到对象中(完成初始化操作)
step3:为 m_taskq 对象指针初始化,将有效的内存地址传递给 m_taskq 对象指针
// 懒汉模式 静态局部对象
class TaskQueue {
public:
	TaskQueue(const TaskQueue &t) = delete;
	TaskQueue& operator=(const TaskQueue &t) = delete;
	static TaskQueue* getInstance() {
		static TaskQueue taskq;
		return &taskq;
	}
	void printTest() { cout << "i am a public method of a singleton class" << endl; }
private:
	TaskQueue() = default;
};

5.简单案例运用

(1)任务队列简单实现
  1. 多线程拿到单例对象后,在访问单例对象内部的数据时,有线程安全问题(多线程共享资源),使用互斥保护多线程中共享的资源

  2. C++11中给互斥锁加/解锁有两种方式

    方法1:调用mutex对象的 unlock(); lock(); 方法

    方法2:使用lock_gurd自动管理加/解锁 lock_guard<mutex> locker(m_mutex);

    使用 lock_gurd 可以有效的避免死锁的问题,自动加/解锁

// 饿汉模式
class TaskQueue {
public:
	TaskQueue(const TaskQueue &t) = delete;
	TaskQueue& operator=(const TaskQueue &t) = delete;
	static TaskQueue *getInstance() { return m_taskq; }
    void printTest() { cout << "i am a public method of a singleton class" << endl; }
    // 判断任务队列是否为空
    bool isEmpty() {
        lock_guard<mutex> locker(m_mutex);
        return m_data.empty();
    }
    // 添加任务
    void addTask(int node) { 
        lock_guard<mutex> locker(m_mutex);
        m_data.push(node);
    }
    // 删除任务
    bool removeTask() {
        lock_guard<mutex> locker(m_mutex);
        if (m_data.empty()) return false;
        m_data.pop();
        return true;
    }
    // 获取队头任务
    int takeTask() {
        lock_guard<mutex> locker(m_mutex);
        if (m_data.empty()) return -1;
        return m_data.front();
    }
private:
    TaskQueue() = default;
	static TaskQueue *m_taskq;
    // 任务队列
    queue<int> m_data;
    mutex m_mutex;
};

TaskQueue* TaskQueue::m_taskq = new TaskQueue;
#include <iostream>
#include <thread>
#include <queue>
#include <mutex>
using namespace std;

int main() {
    // 获取单例对象
    TaskQueue *taskq = TaskQueue::getInstance();
    taskq->printTest();
    // 生产者线程
    // 使用匿名函数指定线程的处理动作
    thread t1([=](){
        for (int i = 0; i < 25; ++i) {
            taskq->addTask(i + 100);
            cout << "++push data:" << i + 100 << ", threadId = " << this_thread::get_id() << endl;
            this_thread::sleep_for(chrono::milliseconds(500));//休眠500ms
        }
    });
    // 消费者线程
    thread t2([=](){
        this_thread::sleep_for(chrono::milliseconds(100));
        while(!taskq->isEmpty()) {
            // 开始消费
            cout << "--take data:" << taskq->takeTask() << ", threadId = " << this_thread::get_id() << endl;
            taskq->removeTask();
            this_thread::sleep_for(chrono::milliseconds(1000));//休眠500ms
        }
    });
    // 主线阻塞 只有当t1、t2线程都结束主线程解除阻塞
    t1.join();
    t2.join();
    return 0;
}

在这里插入图片描述

(2)用户登录

当用户成功登录之后,用户名密码就会被存储到内存中,可以创建一个单例类,将用户数据保存到单例对象中,

class Test {
public:
	static Test* getInstance() { return &m_test; }
    // m_user
    void setUserName(QString name) {
        // 多线程下需要加锁解锁(涉及写操作)
        // lock();
        m_user = name;
        // unlock();
    }
    QString getUserName(){ return m_user; }
    // m_passwd
    // ....
    // ....
    // ....
private:
	Test();
	Test(const Test& t);
	static Test* m_test;
    // static Test m_test;
    // 定义变量 -> 属于唯一的单例对象
    QString m_user;
    QString m_passwd;
    QString m_ip;
    QString m_port;
    QString m_token;
}
Test* Test::m_test = new Test();	// 初始化
// Test Test::m_test;

tips:部分内容参考课程书籍网络等,题解、图示及代码内容根据老师课程、二次整理以及自己知识理解,进行整理和补充,仅供学习参考使用,不可商业化。

原文地址:https://blog.csdn.net/weixin_49167174/article/details/134649768

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_19817.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注