本文介绍: torch.matmul是PyTorch执行一般矩阵乘法的函数,它接受两个矩阵作为输入,并返回它们的乘积。它适用于任何两个矩阵,无论是密集矩阵还是稀疏矩阵

torch.matmul

torch.matmul是PyTorch执行一般矩阵乘法的函数,它接受两个矩阵作为输入,并返回它们的乘积。它适用于任何两个矩阵,无论是密集矩阵还是稀疏矩阵

import torch  
  
# 创建两个 2x2 矩阵  
mat1 = torch.tensor([[1, 2], [3, 4]])  
mat2 = torch.tensor([[5, 6], [7, 8]])  
  
# 使用torch.matmul进行矩阵乘法  
result = torch.matmul(mat1, mat2)  
  
print(result)

torch.mm

torch.mm是PyTorch用于密集矩阵乘法的函数。它接受两个密集矩阵作为输入,并返回它们的乘积。与torch.matmul相比,torch.mm处理密集矩阵时具有更高的性能和更简单语法

import torch  
  
# 创建两个 2x2 矩阵  
mat1 = torch.Tensor([[1, 2], [3, 4]])  
mat2 = torch.Tensor([[5, 6], [7, 8]])  
  
# 使用torch.mm进行矩阵乘法  
result = torch.mm(mat1, mat2)  
  
print(result)

torch.spmm

torch.spmm是PyTorch用于稀疏矩阵乘法的函数。它接受两个稀疏矩阵作为输入,并返回它们的乘积。与torch.matmul和torch.mm相比,torch.spmm更适用于处理包含大量零值元素的矩阵,因为它可以有效地处理稀疏结构并减少计算量。

import torch  
import torch.sparse_coo_tensor as coo_tensor  
  
# 创建两个稀疏矩阵  
row_0 = [0, 1, 2]  
col_0 = [0, 2, 1]  
value_0 = [1, 2, 3]  
sparse_mat1 = coo_tensor.from_sparse((torch.tensor(row_0), torch.tensor(col_0), torch.tensor(value_0)))  
  
row_1 = [0, 2, 3]  
col_1 = [1, 0, 2]  
value_1 = [4, 5, 6]  
sparse_mat2 = coo_tensor.from_sparse((torch.tensor(row_1), torch.tensor(col_1), torch.tensor(value_1)))  
  
# 使用torch.spmm进行矩阵乘法  
result = torch.spmm(sparse_mat1, sparse_mat2)  
  
print(result)

原文地址:https://blog.csdn.net/weixin_43820352/article/details/134613110

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_20016.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注