本文介绍: 模板匹配就是,我们现有一个模板一个图片然后,在这个图片中寻找和模板近似的部分。在opencv 中主要通过cv2.matchTemplate这个函数实现

python opencv模板匹配

模板匹配就是,我们现有一个模板一个图片,然后,在这个图片中寻找和模板近似的部分

opencv 中主要通过cv2.matchTemplate这个函数实现

下面我们先看一下,模板图片和需要匹配的图片:
模板:
在这里插入图片描述
需要匹配的图片:
在这里插入图片描述
下面来看代码

import cv2
import copy
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import os

path=r'D:learnphotocvlena.jpg'
path2=r'D:learnphotocvface.jpg'

img=cv2.imread(path,1)

img_gray=cv2.imread(path,0)


img_template=cv2.imread(path2,1)

img_gray_template=cv2.imread(path2,0)

def cv_show(name,img):
    cv2.imshow(name,img)
    #cv2.waitKey(0),接收0,表示窗口暂停
    cv2.waitKey(0)
    #销毁所有窗口
    cv2.destroyAllWindows()
    
print(img.shape)
print(img_template.shape)
h, w = img_template.shape[:2]
"""
- TM_SQDIFF:计算平方不同,计算出来的值越小,越相关       
- TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关 
- TM_CCORR:计算相关性计算出来的值越大,越相关
- TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
- TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
- TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关
链接https://docs.opencv.org/3.3.1/df/dfb/group__imgproc__object.html#ga3a7850640f1fe1f58fe91a2d7583695d
"""

methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
           'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']

res = cv2.matchTemplate(img, img_template, cv2.TM_SQDIFF)
print(res.shape)
# exit()

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
print(min_val, max_val, min_loc, max_loc)

for meth in methods:
    img2 = img.copy()

    # 匹配方法的真值
    method = eval(meth)
    print(method)
    res = cv2.matchTemplate(img, img_template, method)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

    # 如果是平方差匹配TM_SQDIFF或归一化方差匹配TM_SQDIFF_NORMED,取最小值
    if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
        top_left = min_loc

    else:
        top_left = max_loc
    bottom_right = (top_left[0] + w, top_left[1] + h)

    # 画矩形
    cv2.rectangle(img2, top_left, bottom_right, 255, 2)

    plt.subplot(121), plt.imshow(res,'gray')
    plt.xticks([]), plt.yticks([])  # 隐藏坐标轴
    plt.subplot(122), plt.imshow(img2[:,:,::-1])
    plt.xticks([]), plt.yticks([])
    plt.suptitle(meth)
    plt.show()

运行结果如下
在这里插入图片描述
在这里插入图片描述

原文地址:https://blog.csdn.net/weixin_43327597/article/details/134607725

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_21404.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注