本文介绍: 绘制决策边界和支持向量: 使用 pygame.draw.line 绘制决策边界和支持向量。决策边界使用实线表示,支持向量使用黑色圆圈表示。训练 SVM 模型: 使用 fit 方法训练 SVM 模型,其中 X 是数据点的坐标,y 是数据点的类别。绘制数据点: 使用 pygame.draw.circle 绘制数据点,红色表示类别 0,蓝色表示类别 1。获取支持向量: 计算支持向量,其中 margin 表示支持向量到决策边界的距离。计算决策边界: 使用系数计算决策边界的直线方程,存储在 xx 和 yy 中。
使用 Pygame 演示了支持向量机(SVM)在二维数据上的分类过程。以下是代码的主要步骤和原理解释:
1、初始化和基本设置
Pygame 初始化: 通过 pygame.init() 初始化 Pygame。
定义颜色和屏幕大小: 定义了一些颜色常量(WHITE, BLACK, RED, BLUE)和屏幕的宽度和高度。
创建 Pygame 窗口: 使用 pygame.display.set_mode 创建窗口,设置窗口标题。
2、生成随机数据点和训练 SVM 模型
生成随机数据点: 使用 make_blobs 生成两个簇的随机数据点,存储在 X 和 y 中。
创建 SVM 模型: 使用 svm.SVC 创建一个支持向量机分类器,使用线性核函数。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。