本文介绍: 然后又是若干个卷积层,使用 128 个过滤器,以及一些 same 卷积,然后进行池化,可以推导出池化后的结果是56×56×128,接着再用 256 个相同的过滤器进行三次卷积操作,然后再池化,然后再卷积三次,再池化。连续两个卷积层,都是 64 个 3×3 的过滤器对输入图像进行卷积,输出结果是224×224×64,因为使用了 same 卷积,通道数量也一样。VGG-16 的结构并不复杂,这点非常吸引人,而且这种网络结构很规整,都是几个卷积层后面跟着可以压缩图像大小的池化层,池化层缩小图像的高度和宽度。
VGG-16
Vgg16是牛津大学VGG组提出来的,相比于AlexNet来说,AlexNet的一个改进是采用连续的几个4*3的卷积核来代替AlexNet中的较大的卷积核(11*11,5*5)。前面我们也说过了使用小卷积核是优于大的卷积核的,因为多层非线性层可以增加网络深度来保证学习到更加复杂的模式,而且代价还会更小,也就是参数会更少。
VGG-16 网络,VGG-16 网络没有那么多超参数(不是说训练参数,它的训练参数是1.38亿),这是一种只需要专注于构建卷积层的简单网络。
连续两个卷积层,都是 64 个 3×3 的过滤器对输入图像进行卷积,输出结果是224×224×64,因为使用了 same 卷积,通道数量也一样。就是说先用一个64 个 3×3 的过滤器对输入图像进行卷积,然后输出再用一个64 个 3×3 的过滤器对输入图像进行卷积。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。