本文介绍: 数据可视化是数学建模比赛中关键的一步同学们在以数据可视化表现某些数据可以尝试使用 Python第三方库。不过有些同学可能会问也会遇到不少问题比如选择何种图表,以及如何制作代码如何编写,这些都是问题!今天大家介绍几种常见的 Python 数据可视化图表(第一期),总计约 16 个示例~

数据可视化是数学建模比赛中关键的一步

同学们在以数据可视化表现某些数据时可以尝试使用 Python第三方库。

不过有些同学可能会问也会遇到不少问题,比如选择何种图表,以及如何制作代码如何编写,这些都是问题!

今天大家介绍几种常见的 Python 数据可视化图表(第一期),总计约 16 个示例~

01. 小提琴图

小提琴图可以一组或多组数据的数值变量分布可视化。

import seaborn as sns
import matplotlib.pyplot as plt


# 加载数据
df = sns.load_dataset('iris', data_home='seaborn-data', cache=False)


# 绘图显示
sns.violinplot(x=df["species"], y=df["sepal_length"])
plt.show()

02. 核密度估计

密度估计图是直方图一个拓展。

可以可视化一个多个组的数值变量的分布,适合大型数据集。

import seaborn as sns
import matplotlib.pyplot as plt
# 加载数据
df = sns.load_dataset('iris', data_home='seaborn-data', cache=False)
# 绘图显示
sns.kdeplot(df['sepal_width'])
plt.show()

结果如下

03. 散点图

散点图显示个数变量之间的关系

import seaborn as sns
import matplotlib.pyplot as plt
# 加载数据
df = sns.load_dataset('iris', data_home='seaborn-data', cache=False)
# 绘图显示
sns.regplot(x=df["sepal_length"], y=df["sepal_width"])
plt.show()

结果如下

04. 矩形热力图

矩形热力图,矩阵中的每个值都被表示一个颜色数据。

import seaborn as sns
import pandas as pd
import numpy as np


# 加载数据
df=pd.DataFrame(np.random.random((5,5)),columns=["a","b","c","d","e"])
# Default heatmap
p1 = sns.heatmap(df)

结果如下

05. 相关性

分析每对数据变量之间的关系

相关性可视化为散点图,对角线用直方图密度表示每个变量的分布。

import seaborn as sns
import matplotlib.pyplot as plt
# 加载数据
df = sns.load_dataset('iris', data_home='seaborn-data', cache=True)
# 绘图显示
sns.pairplot(df)
plt.show()

结果如下

06. 气泡

气泡本质一个散点图,其中圆圈大小映射第三数值变量的值。

import matplotlib.pyplot as plt
import seaborn as sns
from gapminder import gapminder
# 导入数据
data = gapminder.loc[gapminder.year == 2007]
# 使用 scatterplot 创建气泡图
sns.scatterplot(data=data, x="gdpPercap", y="lifeExp", size="pop", legend=False, sizes=(20, 2000))
# 显示
plt.show()

结果如下

07. 连接散点图

连接散点图就是一个线图,其中每个数据点由圆形或任何类型标记展示

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
# 创建数据
df = pd.DataFrame({'x_axis': range(1, 10), 'y_axis': np.random.randn(9) * 80 + range(1, 10)})
# 绘制显示
plt.plot('x_axis', 'y_axis', data=df, linestyle='-', marker='o')
plt.show()

08. 雷达

雷达图,可以可视化多个定量变量的一个或多个系列的值。

每个变量都有自己的轴,所有轴都连接图形中心

import matplotlib.pyplot as plt
import pandas as pd
from math import pi
# 设置数据
df = pd.DataFrame({
    'group': ['yun', 'ding', 'shu', 'mo'],
    'var1': [38, 1.5, 30, 4],
    'var2': [29, 10, 9, 34],
    'var3': [8, 39, 23, 24],
    'var4': [7, 31, 33, 14],
    'var5': [28, 15, 32, 14]
})
# 目标数量
categories = list(df)[1:]
N = len(categories)
# 角度
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]
# 初始化
ax = plt.subplot(111, polar=True)
# 设置第一个
ax.set_theta_offset(pi / 2)
ax.set_theta_direction(-1)
# 添加背景信息
plt.xticks(angles[:-1], categories)
ax.set_rlabel_position(0)
plt.yticks([10, 20, 30], ["10", "20", "30"], color="grey", size=7)
plt.ylim(0, 40)
# 添加数据图
# 第一个
values = df.loc[0].drop('group').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="yun")
ax.fill(angles, values, 'b', alpha=0.1)
# 第二个
values = df.loc[1].drop('group').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="ding")
ax.fill(angles, values, 'r', alpha=0.1)
# 第三values = df.loc[2].drop('group').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="shu")
ax.fill(angles, values, 'r', alpha=0.1)
# 第四个
values = df.loc[3].drop('group').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="mo")
ax.fill(angles, values, 'r', alpha=0.1)
# 添加图例
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
# 显示
plt.show()

09. 棒棒糖图

棒棒糖图是柱状图的一种变形显示一个线段和一个圆。

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# 创建数据
df = pd.DataFrame({'group': list(map(chr, range(65, 85))), 'values': np.random.uniform(size=20) })
# 排序取值
ordered_df = df.sort_values(by='values')
my_range = range(1, len(df.index)+1)
# 创建图表
plt.stem(ordered_df['values'])
plt.xticks(my_range, ordered_df['group'])
# 显示
plt.show()

10. 径向柱图

径向柱图同样也是条形图变形,但是使用极坐标而不是直角坐标系

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
# 生成数据
df = pd.DataFrame(
        {
            'Name': ['item ' + str(i) for i in list(range(1, 51)) ],
            'Value': np.random.randint(low=10, high=100, size=50)
        })
# 排序
df = df.sort_values(by=['Value'])
# 初始化画布
plt.figure(figsize=(20, 10))
ax = plt.subplot(111, polar=True)
plt.axis('off')
# 设置图表参数
upperLimit = 100
lowerLimit = 30
labelPadding = 4
# 计算最大值
max = df['Value'].max()
# 数据下限 10, 上限 100
slope = (max - lowerLimit) / max
heights = slope * df.Value + lowerLimit
# 计算条形图的宽度
width = 2*np.pi / len(df.index)
# 计算角度
indexes = list(range(1, len(df.index)+1))
angles = [element * width for element in indexes]
# 绘制条形图
bars = ax.bar(
    x=angles,
    height=heights,
    width=width,
    bottom=lowerLimit,
    linewidth=2,
    edgecolor="white",
    color="#61a4b2",
)
# 添加标签
for bar, angle, height, label in zip(bars,angles, heights, df["Name"]):
    # 旋转
    rotation = np.rad2deg(angle)
    # 翻转
    alignment = ""
    if angle >= np.pi/2 and angle < 3*np.pi/2:
        alignment = "right"
        rotation = rotation + 180
    else:
        alignment = "left"
    # 最后添加标签
    ax.text(
        x=angle,
        y=lowerLimit + bar.get_height() + labelPadding,
        s=label,
        ha=alignment,
        va='center',
        rotation=rotation,
        rotation_mode="anchor")
plt.show()

11. 维恩图

维恩图,显示不同组之间所有可能的关系

import matplotlib.pyplot as plt
from matplotlib_venn import venn2
# 创建图表
venn2(subsets=(10, 5, 2), set_labels=('Group A', 'Group B'))
# 显示
plt.show()

12. 饼图

饼图将圆划分成一个个扇形区域每个区域代表在整体中所占的比例。

import matplotlib.pyplot as plt
# 创建数据
size_of_groups = [12, 11, 3, 30]
# 生成饼图
plt.pie(size_of_groups)
plt.show()

13. 折线图

折线图是最常见图表类型之一。

各个数据点标志连接起来的图表用于展现数据的变化趋势。

import matplotlib.pyplot as plt
import numpy as np
# 创建数据
values = np.cumsum(np.random.randn(1000, 1))
# 绘制图表
plt.plot(values)
plt.show()

14. 堆叠面积图

堆叠面积图表示若干个数值变量的数值演变。

每个显示在彼此的顶部,易于读取总数,但较难准确读取每个的值。

import matplotlib.pyplot as plt
# 创建数据
x = range(1, 6)
y1 = [1, 4, 6, 8, 9]
y2 = [2, 2, 7, 10, 12]
y3 = [2, 8, 5, 10, 6]
# 生成图表
plt.stackplot(x, y1, y2, y3, labels=['A', 'B', 'C'])
plt.legend(loc='upper left')
plt.show()

15. 河流图

河流图是一种特殊的流图, 它主要用来表示事件主题等在一段时间内的变化。

围绕着中心轴显示,且边缘是圆形的,从而形成流动的形状

import matplotlib.pyplot as plt
import numpy as np
from scipy import stats


# 添加数据
x = np.arange(1990, 2020)
y = [np.random.randint(0, 5, size=30) for _ in range(5)]




def gaussian_smooth(x, y, grid, sd):
    """平滑曲线"""
    weights = np.transpose([stats.norm.pdf(grid, m, sd) for m in x])
    weights = weights / weights.sum(0)
    return (weights * y).sum(1)




# 自定义颜色
COLORS = ["#D0D1E6", "#A6BDDB", "#74A9CF", "#2B8CBE", "#045A8D"]


# 创建画布
fig, ax = plt.subplots(figsize=(10, 7))


# 生成图表
grid = np.linspace(1985, 2025, num=500)
y_smoothed = [gaussian_smooth(x, y_, grid, 1) for y_ in y]
ax.stackplot(grid, y_smoothed, colors=COLORS, baseline="sym")


# 显示
plt.show()

16.地图

用于地理空间数据分析

import pandas as pd
import folium


# 创建地图对象
m = folium.Map(location=[20, 0], tiles="OpenStreetMap", zoom_start=2)


# 创建图标数据
data = pd.DataFrame({
   'lon': [-58, 2, 145, 30.32, -4.03, -73.57, 36.82, -38.5],
   'lat': [-34, 49, -38, 59.93, 5.33, 45.52, -1.29, -12.97],
   'name': ['Buenos Aires', 'Paris', 'melbourne', 'St Petersbourg', 'Abidjan', 'Montreal', 'Nairobi', 'Salvador'],
   'value': [10, 12, 40, 70, 23, 43, 100, 43]
}, dtype=str)


# 添加信息
for i in range(0,len(data)):
    folium.Marker(
      location=[data.iloc[i]['lat'], data.iloc[i]['lon']],
      popup=data.iloc[i]['name'],
    ).add_to(m)


# 保存
m.save('map.html')

原文地址:https://blog.csdn.net/ydky_xiaoyun/article/details/127876332

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_23100.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注