本文介绍: 给你一个长度为 n 下标从 0 开始的整数数组 nums ,它包含 1 到 n 的所有数字,请你返回上升四元组数目。如果一个四元组 (i, j, k, l) 满足以下条件我们称它是上升的:0

本文涉及的基础知识

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
动态规划

本题其它解法

C++前缀和算法的应用:统计上升四元组

类似题解

包括题目代码 C++二分查找算法:132 模式解法一枚举3
C++二分查找算法:132 模式解法二枚举2
代码简洁 C++二分查找算法:132 模式解法三枚举1
性能最佳 C++单调向量算法:132 模式解法三枚举1
代码简洁 C++二分查找算法:132模式枚举3简洁版
代码简洁性能优越 C++单调向量:132模式枚举1简洁版

题目

给你一个长度为 n 下标从 0 开始的整数数组 nums ,它包含 1 到 n 的所有数字,请你返回上升四元组数目
如果一个四元组 (i, j, k, l) 满足以下条件我们称它是上升的:
0 &lt;= i &lt; j &lt; k &lt; l < n 且
nums[i] < nums[k] < nums[j] < nums[l] 。
示例 1:
输入nums = [1,3,2,4,5]
输出:2
解释

第一版

分析

1324模式,第1的小在最前面,其次是第3小,再次是第2小的,最后是第4小的。

变量解释

v21 v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)
v32 v32[i3][i2]=k,表示以num[i3]为3以nums[x]为2 组成的132模式的数量是k,x取[0,i2)

代码

class Solution {
public:
long long countQuadruplets(vector&amp; nums) {
m_c = nums.size();
//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)
vector<vector&gt; v21(m_c,vector(m_c+1));
for (int i2 = 0; i2 < m_c; i2++)
{
for (int i1 = 0; i1 < i2; i1++)
{
v21[i2][i1 + 1] = v21[i2][i1] + (nums[i1] < nums[i2]);
}
}
vector<vector&gt; v32(m_c, vector(m_c + 1));
for (int i3 = 0; i3 < m_c; i3++)
{
for (int i2 = i3 + 1; i2 < m_c; i2++)
{
v32[i3][i2 + 1] = v32[i3][i2];
if (nums[i3] &gt; nums[i2])
{
v32[i3][i2 + 1] += v21[i2][i3];
}
}
}
long long llRet = 0;
for (int i3 = 0; i3 < m_c; i3++)
{
for (int i4 = i3 + 1; i4 < m_c; i4++)
{
if (nums[i3] < nums[i4])
{
llRet += v32[i3][i4];
}
}
}
return llRet;
}
int m_c;
};

测试用例

template<class T>
void Assert(const vector<T>&amp; v1, const vector<T>&amp; v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		assert(v1[i] == v2[i]);
	}
}

template<class T>
void Assert(const T&amp; t1, const T&amp; t2)
{
	assert(t1 == t2);
}

int main()
{
	Solution slu;
	vector<int> nums ;
	long long res;
	nums = { 1, 3, 2, 4, 5 };
	res = slu.countQuadruplets(nums);
	Assert(2LL, res);
	nums = { 1, 2,3,4 };
	res = slu.countQuadruplets(nums);
	Assert(0LL, res);
	nums = { 4,3,2,1 };
	res = slu.countQuadruplets(nums);
	Assert(0LL, res);
	nums = { 4,3,2,6,5,1 };
	res = slu.countQuadruplets(nums);
	Assert(0LL, res);
	nums = { 1,3,2,4 };
	res = slu.countQuadruplets(nums);
	Assert(1LL, res);
	nums = { 2,1,4,3,5 };
	res = slu.countQuadruplets(nums);
	Assert(2LL, res);
	nums.clear();
	for (int i = 0; i < 4000; i++)
	{
		nums.emplace_back(i + 1);
	}
	res = slu.countQuadruplets(nums);
	Assert(0LL, res);
	//CConsole::Out(res);
}

第二版

三步是如此相似,也许可以合并。第一步循环似乎不同。我们把第一步的第一层循环换到第二层就更相似了。修改后的第一步

	for (int i1 = 0; i1 < m_c ; i1++)		
		{
			for (int i2 = i1+1; i2 < m_c; i2++)
			{
				v21[i2][i1 + 1] = v21[i2][i1] + (nums[i1] < nums[i2]);
			}
		}

第三版

第一层 的循环变量改成i,第一层的循环变量改成j。

class Solution {
public:
	long long countQuadruplets(vector<int>&amp; nums) {
		m_c = nums.size();
		//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)
		vector<vector<int>> v21(m_c,vector<int>(m_c+1));
		for (int i = 0; i < m_c ; i++)		
		{
			for (int j = i+1; j < m_c; j++)
			{
				v21[j][i + 1] = v21[j][i] + (nums[i] < nums[j]);
			}
		}
		vector<vector<int>> v32(m_c, vector<int>(m_c + 1));
		for (int i = 0; i < m_c; i++)
		{
			for (int j = i + 1; j < m_c; j++)
			{
				v32[i][j + 1] = v32[i][j];
				if (nums[i] > nums[j])
				{
					v32[i][j + 1] += v21[j][i];
				}
			}
		}
		long long llRet = 0;
		for (int i = 0; i < m_c; i++)
		{
			for (int j = i + 1; j < m_c; j++)
			{
				if (nums[i] < nums[j])
				{
					llRet += v32[i][j];
				}
			}
		}
		return llRet;
	}
	int m_c;
};

第四版

三轮循环合并

class Solution {
public:
	long long countQuadruplets(vector<int>&amp; nums) {
		m_c = nums.size();
		//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)
		vector<vector<int>> v21(m_c,vector<int>(m_c+1));
		vector<vector<int>> v32(m_c, vector<int>(m_c + 1));
		long long llRet = 0;
		for (int i = 0; i < m_c ; i++)		
		{
			for (int j = i+1; j < m_c; j++)
			{
				v21[j][i + 1] = v21[j][i] + (nums[i] < nums[j]);
				v32[i][j + 1] = v32[i][j];
				if (nums[i] > nums[j])
				{
					v32[i][j + 1] += v21[j][i];
				}
				if (nums[i] < nums[j])
				{
					llRet += v32[i][j];
				}
			}
		}
		return llRet;
	}
	int m_c;
};

第五版

v2 只用到三处, v21[j][i + 1] 和 v21[j][i],可以简化成一维变量。
优化后,代码如下

class Solution {
public:
	long long countQuadruplets(vector<int>&amp; nums) {
		m_c = nums.size();
		//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)
		vector<vector<int>> v32(m_c, vector<int>(m_c + 1));
		long long llRet = 0;
		vector<int> v21(m_c);
		for (int i = 0; i < m_c ; i++)		
		{			
			for (int j = i+1; j < m_c; j++)
			{		
				v32[i][j + 1] = v32[i][j];
				if (nums[i] > nums[j])
				{
					v32[i][j + 1] += v21[j];
				}
				if (nums[i] < nums[j])
				{
					llRet += v32[i][j];
				}
				v21[j] +=  (nums[i] < nums[j]);
			}
		}
		return llRet;
	}
	int m_c;
};

第六版

v32只用到v32[i][j + 1] v32[i][j],我们可以简化成一个变量i32,i发生变化的时候赋初值0。

class Solution {
public:
	long long countQuadruplets(vector<int>&amp; nums) {
		m_c = nums.size();
		//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)
		long long llRet = 0;
		vector<int> v21(m_c);
		for (int i = 0; i < m_c ; i++)		
		{	
			int i32 = 0;
			for (int j = i+1; j < m_c; j++)
			{					
				if (nums[i] < nums[j])
				{
					llRet += i32;
				}
				if (nums[i] > nums[j])
				{
					i32 += v21[j];
				}
				v21[j] +=  (nums[i] < nums[j]);
			}
		}
		return llRet;
	}
	int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序一条龙,那算法就是他的是睛

测试环境

操作系统win7 开发环境: VS2019 C++17
或者 操作系统win10 开发环境:

VS2022 C++17

原文地址:https://blog.csdn.net/he_zhidan/article/details/134674006

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_23274.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注