本文介绍: 从硬件的角度看,以太网接口电路主要由MAC(Media Access Control)控制器物理层接口PHY(Physical Layer,PHY)两大部分构成。如下图所示:DMA控制器通常属于CPU的一部分,用虚线放在这里是为了表示DMA控制器可能会参与到网口数据传输中。但是,在实际的设计中,以上三部分并不一定独立分开的。由于,PHY整合了大量模拟硬件,而MAC是典型的全数字器件。考虑芯片面积及模拟/数字混合架构原因,通常,将MAC集成微控制器而将PHY留在片外。

本文主要介绍以太网的 MAC 和 PHY,以及之间的 MII(Media Independent Interface媒体独立接口)和 MII 的各种衍生版本——GMII、SGMII、RMII、RGMII等。

简介

硬件的角度看,以太网接口电路主要由MAC(Media Access Control)控制器和物理层接口PHY(Physical Layer,PHY)两大部分构成。如下图所示

图片

DMA控制器通常属于CPU的一部分,用虚线放在这里是为了表示DMA控制器可能会参与到网口数据传输。但是,在实际的设计中,以上三部分并不一定独立分开的。由于,PHY整合了大量模拟硬件,而MAC是典型的全数字器件

考虑芯片面积及模拟/数字混合架构原因,通常,将MAC集成微控制器而将PHY留在片外。更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合

可分为下列几种类型:

  • CPU集成MAC与PHY。目前来说并不多见

图片

图片

图片

MAC及PHY工作在OSI七层模型数据链路层物理层。具体如下

图片

什么是MAC

MAC(Media Access Control)即媒体访问控制子层协议

该部分有两个概念MAC可以一个硬件控制器 及 MAC通信以协议。该协议位于OSI七层协议中数据链路层的下半部分,主要负责控制连接物理层的物理介质。MAC硬件大约就是下面的样子了:

图片

发送数据时候,MAC协议可以事先判断是否可以发送数据,如果可以发送将给数据加上一些控制信息,最终将数据以及控制信息以规定的格式发送物理层

接收数据时候,MAC协议首先判断输入信息是否发生传输错误,如果没有错误,则去掉控制信息发送至LLC(逻辑链路控制)层。该层协议是以太网MAC由IEEE-802. 3以太网标准定义

以太网数据链路层其实包含MAC(介质访问控制)子层和LLC(逻辑链路控制)子层。一块以太网卡MAC芯片的作用不但要实现MAC子层和LLC子层功能,还要提供符合规范的PCI界面实现主机数据交换

MAC从PCI总线收到IP数据包(或者其他网络层协议的数据包)后,将之拆分并重新打包最大1518Byte最小64Byte的帧。

这个帧里面包括了目标MAC地址自己的源MAC地址数据包里面的协议类型(比如IP数据包类型用80表示最后还有一个DWORD(4Byte)的CRC码。

可是目标的MAC地址是哪里来的呢?

这牵扯到一个ARP协议(介乎于网络层和数据链路层一个协议)。第一次传送某个目的IP地址的数据的时候,先会发出一个ARP包,其MAC的目标地址广播地址,里面说到:“谁是xxx.xxx.xxx.xxx这个IP地址的主人?”因为是广播包,所有这个局域网主机收到了这个ARP请求

收到请求主机将这个IP地址和自己的相比较,如果不相同就不予理会,如果相同就发出ARP响应包。

这个IP地址主机收到这个ARP请求包后回复的ARP响应里说到:“我是这个IP地址的主人”。这个包里面就包括了他的MAC地址。以后的给这个IP地址的帧的目标MAC地址就被确定了。(其它的协议如IPX/SPX也有相应的协议完成这些操作)。

IP地址和MAC地址之间的关联关系保存主机系统里面,叫做ARP表。由驱动程序操作系统完成。

以太网MAC芯片的一端接计算机PCI总线,另外一端就接到PHY芯片上,它们之间是通过MII接口链接的。一个MAC的结构图如下图所示

图片

什么是PHY

PHY((Physical Layer,PHY))是IEEE802.3中定义的一个标准模块,STA(station management entity管理实体,一般为MAC或CPU)通过SMI(Serial Manage Interface)对PHY的行为状态进行管理和控制,而具体管理和控制动作是通过读写PHY内部寄存器实现的。一个PHY的基本结构下图

图片

PHY是物理接口收发器,它实现OSI模型物理层

IEEE-802.3标准定义了以太网PHY。包括MII/GMII(介质独立接口)子层、PCS(物理编码子层)、PMA(物理介质附加)子层、PMD(物理介质相关)子层、MDI子层。它符合IEEE-802.3k用于10BaseT(第14条)和100BaseTX(第24条和第25条)的规范。

注:PHY寄存器在IEEE802.3标准的 22.2.4 Management functions 节有介绍,但不涉及所有的寄存器,个别寄存器需要到其它章节中看,当然,文档里面也提到该在哪里找到哪个寄存器

什么是MII

MII(Media Independent Interface)即媒体独立接口,MII 接口是 MAC 与 PHY 连接的标准接口。它是 IEEE-802.3 定义的以太网行业标准。MII 接口提供了 MAC 与 PHY 之间、PHY 与 STA(Station Management)之间的互联技术,该接口支持 10Mb/s 与 100Mb/s 的数据传输速率数据传输的位宽为 4 位。MII 接口如下图所示:

图片

MII接口主要包括四个部分。一是从MAC层到PHY层的发送数据接口,二是从PHY层到MAC层的接收数据接口,三是从PHY层到MAC层的状态指示信号,四是MAC层和PHY层之间传送控制和状态信息的MDIO接口。

图片

MII 包括一个数据接口,以及一个 MAC 和 PHY 之间的管理接口:

PHY 里面的部分寄存器是 IEEE 定义的,这样PHY把自己的目前的状态反映到寄存器里面。

MAC 通过 SMI 总线不断的读取PHY 的状态寄存器以得知目前 PHY 的状态。例如连接速度、双工的能力等。

当然也可以通过 SMI 设置 PHY的寄存器达到控制的目的。例如流控的打开关闭、自协商模式还是强制模式等。

不论是物理连接的MII总线和 SMI 总线,还是 PHY 的状态寄存器和控制寄存器都是由IEEE的规范的。因此不同公司的 MAC 和 PHY 一样可以协调工作。当然为了配合不同公司的 PHY 的自己特有的一些功能驱动需要做相应的修改

MII 支持 10Mbps 和 100Mbps 的操作,一个接口由 14 根线组成,它的支持还是比较灵活的。但是有一个缺点是因为它一个端口用的信号线太多,如果一个 8 端口交换机用到 112 根线,16 端口就要用到 224 根线,到 32 端口的话就要用到 448 根线。

一般按照这个接口做交换机是不太现实的。所以现代的交换机的制作都会用到其它的一些从 MII 简化出来的标准,比如 RMII、SMII、GMII等。

什么是RMII(Reduced Media Independant Interface)

简化媒体独立接口是标准的以太网接口之一,比 MII 有更少的 I/O 传输。RMII 口是用两根线来传输数据的,MII 口是用 4 根线来传输数据的,GMII 是用 8 根线来传输数据的。

MII/RMII 只是一种接口,对于10Mbps 线速,MII 的时钟速率是 2.5MHz 就可以了,RMII 则需要 5MHz;对于 100Mbps 线速,MII 需要的时钟速率是 25MHz,RMII 则是 50MHz。

MII/RMII 用于传输以太网包,在 MII/RMII 接口是 4/2bit 的,在以太网的PHY里需要做串并转换编解码等才能在双绞线和光纤上进行传输,其帧格式遵循IEEE 802.3(10M)/IEEE 802.3u(100M)/IEEE 802.1q(VLAN)。

以太网帧的格式为:前导符 + 开始位 + 目的 mac 地址 + 源 mac 地址 + 类型/长度 + 数据 + padding(optional) + 32bitCRC。如果有 vlan,则要在类型/长度后面加上 2 个字节vlan tag,其中 12bit表示vlan id,另外,4bit 表示数据的优先级

什么是GMII(Gigabit Media Independant Interface

GMII是千兆网的MII接口,这个也有相应的RGMII接口,表示简化了的GMII接口。GMII 采用 8 位接口数据,工作时钟125MHz,因此传输速率可达 1000Mbps

同时兼容 MII 所规定的10/100 Mbps工作方式。GMII 接口数据结构符合IEEE以太网标准,该接口定义见 IEEE 802.3-2000。

图片

什么是RGMII

RGMII(Reduced Gigabit Media Independant Interface),精简GMII接口。相对于GMII相比,RGMII具有如下特征

信号定义如下

图片

虽然RGMII信号线减半,但TXC/RXC时钟仍为125Mhz,为了达到1000Mbit的传输速率,TXD/RXD信号线在时钟上升沿发送接收GMII接口中的TXD[3:0]/RXD[3:0],在时钟下降沿发送接收TXD[7:4]/RXD[7:4],并且信号TX_CTL反应了TX_EN和TX_ER状态,即在TXC上升沿发送TX_EN,下降沿发送TX_ER,同样的道理试用于RX_CTL,下图为发送接收的时序

图片

什么是SMI

SMI:串行管理接口(Serial Management Interface),通常直接被称为MDIO接口(Management Data Input/Output Interface)。

MDIO最早在IEEE 802.3的第22卷定义,后来在第45卷又定义了增强版本的MDIO,其主要被应用于以太网的MAC和PHY层之间,用于MAC层器件通过读写寄存器来实现对PHY层器件的操作与管理

MDIO主机(即产生MDC时钟的设备)通常被称为STA(Station Management Entity),而MDIO从机通常被称为MMD(MDIO Management Device)。通常STA都是MAC层器件的一部分,而MMD则是PHY层器件的一部分。

MDIO接口包括两条线,MDIO和MDC,其中MDIO是双向数据线,而MDC是由STA驱动的时钟线。MDC时钟的最高速率一般为2.5MHz,MDC也可以是非固定频率,甚至可以是非周期的。

MDIO接口只是会在MDC时钟的上升沿进行采样,而并不在意MDC时钟的频率(类似于I2C接口)。如下图所示。

图片

QA

网卡的MAC和PHY间的关系?

网卡工作在osi的最后两层,物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码电路等,并向数据链路层设备提供标准接口.物理层的芯片称之为PHY.

数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能.以太网卡中数据链路层的芯片称之为MAC控制器.

很多网卡的这两个部分是做到一起的.他们之间的关系pci总线mac总线,macphy,phy接网线(当然也不是直接接上的,还有一个变压装置).

PHY和MAC之间如何进行沟通

通过IEEE定义的标准的MII/GigaMII(Media Independed Interfade,介质独立界面界面连接MAC和PHY。这个界面是IEEE定义的。MII界面传递网络的所有数据和数据的控制。

而MAC对PHY的工作状态的确定和对PHY的控制则是使用SMI(Serial Management Interface界面通过读写PHY的寄存器来完成的。

PHY里面的部分寄存器也是IEEE定义的,这样PHY把自己的目前的状态反映到寄存器里面,MAC通过SMI总线不断的读取PHY的状态寄存器以得知目前PHY的状态,例如连接速度,双工的能力等。

当然也可以通过SMI设置PHY的寄存器达到控制的目的,例如流控的打开关闭,自协商模式还是强制模式等。

我们看到了,不论是物理连接的MII界面和SMI总线还是PHY的状态寄存器和控制寄存器都是有IEEE的规范的,因此不同公司的MAC和PHY一样可以协调工作。当然为了配合不同公司的PHY的自己特有的一些功能,驱动需要做相应的修改

原文地址:https://blog.csdn.net/u010783226/article/details/134733038

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_23920.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注