本文介绍: 该模型主要借助一维卷积单元提取数据的高维特征,GRU单元学习数据中的时序特征,并通过引入注意力机制加强重要特征的学习,实现对超长序列的学习。多变量回归预测程序是这样的,输入前一天18个气象特征,采样时间为24小时,输出为第二天的24小时的功率出力,也就是18×24输入,1×24输出,一共有75个这样的样本。CNN-GRU-Attention注意力机制多变量时间序列回归预测算法,基于卷积神经网络和门控循环单元网络结合注意力机制的多变量回归预测MATLAB程序。程序内有详细注释,便于理解程序运行。
程序名称:CNN-GRU-Attention基于卷积神经网络和门控循环单元网络结合注意力机制的多变量回归预测
代码简介:为更准确地预测,提出基于注意力机制的CNN-GRU预测模型。该模型主要借助一维卷积单元提取数据的高维特征,GRU单元学习数据中的时序特征,并通过引入注意力机制加强重要特征的学习,实现对超长序列的学习。
基于卷积神经网络和门控循环单元网络结合注意力机制的多变量回归预测是一种常见的深度学习模型,用于处理多个输入变量之间的关系,预测一个或多个输出变量的值。该模型通常包括以下几个步骤:
该模型在多个领域都有广泛应用,例如气象学、金融、医学等,可以用于预测温度、股票价格、疾病诊断等多种场景。
CNN-GRU-Attention注意力机制多变量时间序列回归预测算法,基于卷积神经网络和门控循环单元网络结合注意力机制的多变量回归预测MATLAB程序。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。