本文介绍: 联邦查询可以很好的解决这个问题使用统一查询引擎屏蔽了不同olap引擎的专有DSL,大大提升了开发效率和学习成本,同时可以用ONE SQL方式整合来自不同数据源指标形成新的指标,从而提高指标复用性。改造后,我们数据存储引入了StarRocks,StarRocks提供了极速的单表多表查询能力,同时以StarRocks为基础我们打造了统一查询引擎统一查询引擎根据京东的业务特点增加数据源聚合下推等功能,UData在统一查询引擎的基础上统一了数据分析数据服务功能

1 背景

数据服务数据分析场景数据团队在数据应用两个大的方向行业大家可能会遇到下面的问题

1.1 数据服务

1.2 数据分析

除了以上问题,数据服务数据分析系统也是无法统一,分析产生的数据结果往往是离线的,需要额外开发数据服务,无法快速转化为线上服务赋能外部系统,使得分析和服务之间难以快速形成闭环。而且在以往数据加工过程存储往往只考虑了当时的需求,当后续需求场景扩展,最初的存储引擎可能不适用,导致一份数据针对不同的场景存储到不同的存储引擎,带来数据一致性隐患和成本浪费问题。

2 基于StarRocks 的数据服务分析一体化实践

基于以上这些业务痛点京东物流运营数据产品团队研发了服务分析一体化系统——UData(Universal Data),UData系统是以StarRocks引擎为技术基础的实现的。UData把数据指标生成过程抽象出来,用配置的方式低代码化生成数据服务,大大降低的开发复杂性和难度,让非研发同学也可以根据自己需求配置发布自己数据服务,指标的开发时间由之前的一两天缩短为30分钟,大大解放了研发力。平台化的指标管理体系和数据地图功能,让用户更加直观和方便地查找与维护指标,同时也让指标复用变成可能

数据分析方面,我们基于StarRocks的联邦查询方案打造了UData统一查询引擎,解决了查询引擎不统一和数据孤岛问题,同时StarRocks提供了强悍的数据查询性能,无论是大宽表还是多表关联查询性能都十分出色。StarRocks提供数据实时摄入的能力和多种实时数据模型可以很好的支持数据实时更新场景。UData系统把分析和服务结合在一起,让分析和服务不再是分割两个过程用户分析出有价值的数据后可以立即生成对应的数据服务,让服务分析快速闭环。

数据流架构图

改造前的架构


图1 改造前架构图

改造前实时数据由JDQ(京东日志消息队列,类似Kafka)和JMQ导入Flink做实时数据加工,加工后数据写入Clickhouse和ElasticSearch,为数据服务和数据分析提供Olap查询服务。离线数据由Spark个数仓层级加工,APP层数据会同步至Mysql或Clickhouse做Olap查询。此架构中,在数据服务和数据分析是两个分隔部分,分析工具由于要跨多数据源和不同的查询语言做数据分析比较困难的,数据服务也是烟囱式开发。

改造后的架构


图2 改造后的架构

改造后,我们在数据存储层引入了StarRocks,StarRocks提供了极速的单表多表查询能力,同时以StarRocks为基础我们打造了统一查询引擎,统一查询引擎根据京东的业务特点增加数据源聚合下推等功能,UData在统一查询引擎的基础上统一了数据分析和数据服务功能。

打造一款数据服务分析一体化系统对查询引擎有比较高的要求,需要同时满足:极速的查询性能支持联邦查询、实时与离线存储统一。基于这三点要求,下面我们就StarRocks极速的查询性能原因、我们对联邦查询的改造、实时场景的实践展开讨论

2.1 StarRocks极速的查询性能原因

速查询的单表查询:

StarRocks在极速查询方面上做了很多,下面着重介绍下面四点:

  1. 量化执行:StarRocks实现了从存储层到查询层的全面向量化执行,这是SR在速度上优势的基础。向量化执行分发挥了CPU的处理能力。全面向量化引擎按照列式的方式组织处理数据。StarRocks的数据存储、内存中数据的组织方式,以及SQL算子计算方式,都是列式实现的。按列的数据组织也会更加充分的利用CPU的Cache,按列计算会有更少的虚函数调用以及更少的分支判断从而获得更加充分的CPU指令流水。另一方面,StarRocks的全面向量化引擎通过量化算法充分的利用CPU提供的SIMD指令。这样StarRocks可以用更少的指令数目,完成更多的数据操作。经过标准测试集的验证,StarRocks的全面向量化引擎可以执行算子性能整体提升3—10倍。
  2. 物化视图速查询:在实际分析场景中,我们经常遇到分析上百亿的大表情况,尽管SR性能优异但数据量过大查询速度还是影响的,此时在用户经常聚合的维度加上了物化视图,在不用改变查询语句的情况下查询速度提升10倍以上,SR智能化的物化视图可以请求自动匹配视图,无需手动查询视图
  3. CBO:CBO(Cost-based Optimizer ) 优化采用 Cascades 框架使用多种统计信息来完善成本估算,同时补充逻辑转换(Transformation Rule)和物理实现(Implementation Rule规则,能够在数万级别执行计划搜索空间中,选择成本最低的最优执行计划
  4. 适应低基数优化:StarRocks可以自适的根据数据分布,对低基数的字符串类型的列构建一张全局字典,用Int类型做存储和查询,使得内存开销更小,有利于SIMD指令执行,加快了查询速度。与此对应Clickhouse也有LowCardinality方式优化,只是需要在建表时候需要声明使用起来会麻烦一些。

极速的多表关联

在实时数据分析场景中只满足单表极速查询是不够的,目前为了加速查询速度行业内习惯于把多张表打成一张大宽表,大宽表虽随度快,但是带来的问题是极其不灵活,实时数据加工层是用flink将多表 join成一张表写入大宽表,当业务方想修改或增加分析维度时往往数据开发周期过长,数据加工完成后发现已经错过了分析最佳时机。所以需要更灵活的数据模型,比较理想的方法是把大宽表模式退归回星型模型或者雪花模型。在此场景下查询引擎对多表数据关联查询的性能成了关键,以往clickhouse以大宽表为主,多表联查情况下无法保证查询相应时间,甚至有很大几率出现OOM。SR很好解决了这个问题,大表join性能提升3~5倍以上,成为星型模型分析利器。CBO(Cost-based Optimizer )是多表关联极致性能关键,同时StarRocks 支持Broadcost Join、Shuffle Join、Bucket shuffle Join、Colocated Join、Replicated Join等多种join方式,CBO可以智能的选择join顺序和join方式。

2.2 对StarRocks联邦查询的改造

在存储层层由于需求场景、历史等原因是很难做到真正统一的存储的,在过去的数据服务开发中由于存储层不统一、数据库查询语法不同,开发基本是烟囱式开发,已开发的指标很难复用,也很难管理大量的已开发指标。联邦查询可以很好的解决这个问题,使用统一的查询引擎屏蔽了不同olap的引擎的专有DSL,大大提升了开发效率和学习成本,同时可以用ONE SQL方式整合来自不同数据源的指标形成新的指标,从而提高了指标的复用性。StarRocks外表扩展功能让它具备了实现联邦查询的基础,但细节上我们有一些自己的业务需求

StarRocks在联邦查询上支持了多种外表如ES、Mysqlhive、数据湖等,已经有了很好的联邦查询的基础。不过在实际的业务场景需求中,一些聚合类的查询需要从外部数据源拉取数据再聚合,而且这些数据源自身的聚合性能也不错,这反而增加了查询时间。我们的思路是让这部分擅长聚合的引擎自己做聚合,把聚合操作下推到外部引擎,目前符合这个优化条件的引擎有:Mysql、ElasticSearch、Clickhouse。同时为了兼容更多的数据源,我们还增加了 JSF(京东内部RPC服务)/HTTP 数据源,下面简单介绍下这两部分

1.Mysql、ElasticSearch的聚合下推功能

现在StarRocks对于聚合外部数据源的方案是拉取谓词下推后的全量的数据,虽然谓词下推后已经过滤部分数据但是把数据拉取到StarRocks再聚合是一个很重的操作,导致聚合时间不理想。我们的思路是下推聚合操作,让外部表引擎自己做聚合,节省数据拉取时间,同时本地化聚合效率更高。聚合下推的优化在某些场景下有10倍以上的性能提升。


图3 物理计划优化

在物理执行计划层我们做了再次优化,当遇到ES、Mysqlclickhouse的聚合造作时,会把ScanNode+AGGNode执行计划优化为QueryNode,QueryNode为一种特殊的ScanNode,与普通的ScanNode区别为QueryNode会直接把聚合查询请求直接发送到对应外部引擎,而不是scan数据后在本地执行聚合。其中EsQueryNode我们会在FE端就生成ES查询的DSL语句,直接下推到BE端查询 。在同时在BE端我们实现了EsQueryNode 和MysqlQueryNode这两种QueryNode。

2.增加 JSF(京东内部RPC服务)/HTTP 数据源

数据服务中可能会涉及到整合外部数据服务和复用原先已开发指标的场景,我们的思路是把JSF(京东内部RPC服务)/HTTP也抽象成StarRocks的外部表,用户可以通过SQL像查询数据库一样访问数据服务,这样不仅可以复用老的指标还可以结合其他数据源的数据生成新的复合指标。我们在FE和BE端同时增加JSF和HTTP 两种ScanNode。

2.3 实时场景的实践

京东物流实时数据绝大多数属于更新场景,运单类数据会根据业务状态的改变而改变,下面介绍我们在生产中的三种实时更新方案:

方案一:基于ES的实时更新方案

原理如下

  1. 内部get获取document
  2. 内存更新老的document
  3. 将老的document标记deleted
  4. 创建新的document

优点:

  • 支持数据实时更新,可以做到partail update

缺点:

方案二:基于clickhouse实现准实时的方案

原理如下

  1. 使用ReplacingMergeTree 的方式实现
  2. 将Primary key相同的数据分发到同一个数据节点的同一个数据分区
  3. 查询时做Merge on read合并版本数据读取

优点:

缺点:

  • 由于读取时做版本合并,查询和并发性能较差
  • clickhouse的join性能不佳,会造成数据孤岛问题

方案三:基于StarRocks主键模型的实时更新方案

原理:StarRocks收到对某行的更新操作时,会通过主键索引找到该条记录位置,并对其标记删除,再插入一条新的记录。相当于把Update改写为Delete+Insert。StarRocks收到对某行的删除操作时,会通过主键索引找到该条记录位置,对其标记删除。这样在查询时不影响谓词下推和索引的使用, 保证了查询的高效执行。查询速度比Merge on read方式快5-10倍。

优点:

缺点:

实时更新场景总的来说有以下几种方案:

  1. Merge on read :StarRocks 的聚合、Unique模型和Clickhouse的ReplacingMergeTree、AggregatingMergeTree都是用的此方案。此方案特点是append方式写入性能好,但是查询时需要合并多版本数据导致查询性能不佳。适合数据查询性能要求不高的实时分析场景。
  2. Copy on write :目前一些数据湖系统如hudiiceberg都有copy on write 的方案现实,此方案原理是当有更新数据后,会合并新老数据并重写一份新的文件替换掉老文件,查询时无需做merge操作,所以查询性能很好。带来的问题是写和数据合并的操作很重,所以此方案不适合实时性强的写入场景。
  3. Delete and insert:此方案是upsert 方案,通过内存中的主键索引定位要更新的行,标记删除然后插入。在牺牲了部分写入性能的情况下,带来查询上数倍于Merge on read 的提升,同时也提升了并发性能。

实时更新在Olap领域一直是一个技术难点,以往的解决方案很难同时具备写入性能好、读取性能好、使用简单这几个特性。StarRocks的Delete and insert方式目前更接近于理想的方案,在读写方面都有很优秀的性能,支持Mysql协议使用上简单友好。同时离线分析Udata也是用StarRocks完成,让我们实现了实时离线分析一体化目标

3 后续方向

数据湖探索:批流一体已经成为今后发展的大趋势,数据湖作为批流一体的存储载体已经成为标准,我们以后大方向也必然是批流一体。目前批流一体中一个大痛点问题是没有一种查询引擎可以在数据湖上做极速查询,后期我们会借助SR打造在湖上的极速分析能力,让批流一体不只停留在计算阶段
架构图如下

图4 后期计划架构图

  • 实时数据存储统一:目前系统中还是多套实时存储方案,运维成本还是相当高,后期我们会逐步把ES、Clickhouse替换为StarRocks,在实时层做到存储统一。我们也很期待StarRocks后期关于主键模型支持detele语句方式删除数据的Feature,这个Feature可以简化目前的数据清除问题。
  • 支持更多的数据源:今后我们还会支持更多的数据源,如Redis、Hbase等kv类型的Nosql数据库,增强SR的点查能力。
  • StarRocks集群间的联邦查询:在实际生产中很难做到只用一个大集群,特别是当实时有大量实时写入的情况,比较安全的做法是拆分不同的小集群,当一个集群出问题时不会影响其他业务。但是带来的问题是,集群间可能又会变为数据孤岛,即便把StarRocks伪装成Mysql创建外表,但也需要工具同步各个集群的表结构信息管理起来费时费力,后续我们也会和社区讨论如何实现集群间的联邦功能。

作者:京东物流 张栋 贺思远

来源:京东云开发者社区 自猿其说Tech 转载请注明来源

原文地址:https://blog.csdn.net/JDDTechTalk/article/details/134663993

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_26578.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除!

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注