面板数据数据熵值法公式–基于Python
更新时间:2022年11月9日
更新内容:已解决运行代码时出现下述问题:
一、理论基础
本文通过王晓红等(2021)中所使用到的面板数据熵值法公式,来讲解如何对面板数据使用熵值法及Python代码的实现,具体过程如下:
二、代码实现
三、实例
在本例中,求用水量与GDP增长率这两个指标所占的比重。
数据格式如下图所示:
注:每个指标单独放在一个sheet表里
四、结果验证
为验证结果的正确性,此处使用spssau进行验证,结果如下图所示:
比较二者的结果,可认为本文所提供的代码具有一定的合理性。
五、说明
在计算信息熵时(如下图所示),由于我们对数据采用的是极差标准化方法,使得标准化后的数据的取值范围在[0,1]之间,也就是说该方法会使得部分数据取到0,而在计算信息熵时(如下图所示),ln0是无效的。而在相关文献中关于P的处理,有以下两种:一种是对标准化后的数据进行平移(本文中采取该方法),另一种则是令P*lnP=0。因此,对于这两种方法所求出来的权重之间的差异如何,本文在此利用上文中的数据对第二种方法进行计算。
第二种方法的处理方式:将下列代码删除即可
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。