本文介绍: 新一代数据存储技术Apache Paimon(Flink Table Store入门Demo本文给出了一些简单flinkpaimon样例example),可供快速学习上手(文中所有代码均已跑通)。

目录

前言

1. 什么是 Apache Paimon

一、本地环境快速上手

1、本地Flink伪集群

2、IDEA中跑Paimon Demo

2.1 代码

2.2 IDEA中成功运行

3、IDEA中Stream读写

3.1 流写

3.2 流读(toChangeLogStream)

二、进阶:本地(IDEA)多流拼接测试

要解决的问题:

note:

1、’changelog-producer’ = ‘full-compaction’

(1)multiWrite代码

(2)读延迟

2、’changelog-producer’ = ‘lookup’

三、可能遇到的问题

四、展望


前言

1. 什么是 Apache Paimon

        Apache Paimon (incubating) 是一项流式数据存储技术可以用户提供高吞吐、低延迟数据摄入流式订阅以及实时查询能力。

        Paimon 采用开放数据格式技术理念可以与 Apache Flink / Spark / Trino 等诸多业界主流计算引擎进行对接,共同推进 Streaming Lakehouse 架构的普及和发展

        Paimon 以湖存储方式基于分布式文件系统管理数据,并采用开放 ORC、Parquet、Avro 文件格式支持各大主流计算引擎,包括 Flink、Spark、Hive、Trino、Presto。未来会对接更多引擎,包括 Doris 和 Starrocks

官网https://paimon.apache.org/ 

Githubhttps://github.com/apache/incubator-paimon

以下为快速入门上手Paimon的example

一、本地环境快速上手

基于paimon 0.4-SNAPSHOT (Flink 1.14.4),Flink版本太低是不支持的,paimon基于最低版本1.14.6,经尝试在Flink1.14.0是不可以的!

paimonflink-1.14-0.4-20230504.002229-50.jar

1、本地Flink集群

0. 需要下载jar包,并添加flinklib中;

1. 根据官网demo启动flinksqlclient创建catalog创建表,创建数据源视图),insert数据表中

2. 通过 localhost:8081 查看 Flink UI

3. 查看filesystem数据、元数据文件

2、IDEA中跑Paimon Demo

pom依赖

        <dependency>
            &lt;groupId&gt;org.apache.paimon</groupId&gt;
            <artifactId&gt;paimon-flink-1.14</artifactId&gt;
            <version&gt;0.4-SNAPSHOT</version>
        </dependency>

拉取不到的可以手动添加到本地maven仓库

mvn install:installfile -DgroupId=org.apache.paimon -DartifactId=paimon-flink-1.14 -Dversion=0.4-SNAPSHOT -Dpackaging=jar -Dfile=D:softwarepaimon-flink-1.14-0.4-20230504.002229-50.jar

2.1 代码

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

/**
 * @Author: YK.Leo
 * @Date: 2023-05-14 15:12
 * @Version: 1.0
 */

// Succeed at local !!!
public class OfficeDemoV1 {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setParallelism(1);
        env.enableCheckpointing(10000l);
        env.getCheckpointConfig().setCheckpointStorage("file:/D:/tmp/paimon/");

        TableEnvironment tableEnv = StreamTableEnvironment.create(env);

        // 0. Create a Catalog and a Table
        tableEnv.executeSql("CREATE CATALOG my_catalog_api WITH (n" +
                "    'type'='paimon',n" +                           // todo: !!!
                "    'warehouse'='file:///D:/tmp/paimon'n" +
                ")");

        tableEnv.executeSql("USE CATALOG my_catalog_api");

        tableEnv.executeSql("CREATE TABLE IF NOT EXISTS word_count_api (n" +
                "    word STRING PRIMARY KEY NOT ENFORCED,n" +
                "    cnt BIGINTn" +
                ")");

        // 1. Write Data
        tableEnv.executeSql("CREATE TEMPORARY TABLE IF NOT EXISTS word_table_api (n" +
                "    word STRINGn" +
                ") WITH (n" +
                "    'connector' = 'datagen',n" +
                "    'fields.word.length' = '1'n" +
                ")");

        // tableEnv.executeSql("SET 'execution.checkpointing.interval' = '10 s'");

        tableEnv.executeSql("INSERT INTO word_count_api SELECT word, COUNT(*) FROM word_table_api GROUP BY word");

        env.execute();
    }
}

2.2 IDEA中成功运行

3、IDEA中Stream读写

3.1 流写

代码

package com.study.flink.table.paimon.demo;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.StatementSet;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

/**
 * @Author: YK.Leo
 * @Date: 2023-05-17 11:11
 * @Version: 1.0
 */

// succeed at local !!!
public class OfficeStreamsWriteV2 {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setParallelism(1);
        env.enableCheckpointing(10000L);
        env.getCheckpointConfig().setCheckpointStorage("file:/D:/tmp/paimon/");

        TableEnvironment tableEnv = StreamTableEnvironment.create(env);


        // 0. Create a Catalog and a Table
        tableEnv.executeSql("CREATE CATALOG my_catalog_local WITH (n" +
                "    'type'='paimon',n" +                           // todo: !!!
                "    'warehouse'='file:///D:/tmp/paimon'n" +
                ")");

        tableEnv.executeSql("USE CATALOG my_catalog_local");

        tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS my_catalog_local.local_db");
        tableEnv.executeSql("USE local_db");

        // drop tbl
        tableEnv.executeSql("DROP TABLE IF EXISTS paimon_tbl_streams");
        tableEnv.executeSql("CREATE TABLE IF NOT EXISTS paimon_tbl_streams(n"
                + " uuid bigint,n"
                + " name VARCHAR(3),n"
                + " age int,n"
                + " ts TIMESTAMP(3),n"
                + " dt VARCHAR(10), n"
                + " PRIMARY KEY (dt, uuid) NOT ENFORCED n"
                + ") PARTITIONED BY (dt) n"
                + " WITH (n" +
                "    'merge-engine' = 'partial-update',n" +
                "    'changelog-producer' = 'full-compaction', n" +
                "    'file.format' = 'orc', n" +
                "    'scan.mode' = 'compacted-full', n" +
                "    'bucket' = '5', n" +
                "    'sink.parallelism' = '5', n" +
                "    'sequence.field' = 'ts' n" +   // todo, to check
                ")"
        );

        // datagen ====================================================================
        tableEnv.executeSql("CREATE TEMPORARY TABLE IF NOT EXISTS source_A (n" +
                " uuid bigint PRIMARY KEY NOT ENFORCED,n" +
                " `name` VARCHAR(3)," +
                " _ts1 TIMESTAMP(3)n" +
                ") WITH (n" +
                " 'connector' = 'datagen', n" +
                " 'fields.uuid.kind'='sequence',n" +
                " 'fields.uuid.start'='0', n" +
                " 'fields.uuid.end'='1000000', n" +
                " 'rows-per-second' = '1' n" +
                ")");
        tableEnv.executeSql("CREATE TEMPORARY TABLE IF NOT EXISTS source_B (n" +
                " uuid bigint PRIMARY KEY NOT ENFORCED,n" +
                " `age` int," +
                " _ts2 TIMESTAMP(3)n" +
                ") WITH (n" +
                " 'connector' = 'datagen', n" +
                " 'fields.uuid.kind'='sequence',n" +
                " 'fields.uuid.start'='0', n" +
                " 'fields.uuid.end'='1000000', n" +
                " 'rows-per-second' = '1' n" +
                ")");

        //
        //tableEnv.executeSql("insert into paimon_tbl_streams(uuid, name, _ts1) select uuid, concat(name,'_A') as name, _ts1 from source_A");
        //tableEnv.executeSql("insert into paimon_tbl_streams(uuid, age, _ts1) select uuid, concat(age,'_B') as age, _ts1 from source_B");
        StatementSet statementSet = tableEnv.createStatementSet();
        statementSet
                .addInsertSql("insert into paimon_tbl_streams(uuid, name, ts, dt) select uuid, name, _ts1 as ts, date_format(_ts1,'yyyy-MM-dd') as dt from source_A")
                .addInsertSql("insert into paimon_tbl_streams(uuid, age, dt) select uuid, age, date_format(_ts2,'yyyy-MM-dd') as dt from source_B")
                ;

        statementSet.execute();
        // env.execute();
    }
}

结果

       如果只有一个流,上述代码完全没有问题【仅作为write demo一个即可】,两个流会出现“冲突”问题!

如下

        使用官网方法Dedicated Compaction Job,似乎并没有奏效,至于解决方法请看下文 “二、进阶:本地(IDEA)多流拼接测试”; 

3.2 流读(toChangeLogStream)

代码

package com.study.flink.table.paimon.demo;

import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Schema;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.connector.ChangelogMode;
import org.apache.flink.types.Row;
import org.apache.flink.types.RowKind;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

/**
 * @Author: YK.Leo
 * @Date: 2023-05-15 18:50
 * @Version: 1.0
 */

// 流读单表OK!
public class OfficeStreamReadV1  {

    public static final Logger LOGGER = LogManager.getLogger(OfficeStreamReadV1.class);

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setParallelism(1);
        env.enableCheckpointing(10000L);
        env.getCheckpointConfig().setCheckpointStorage("file:/D:/tmp/paimon/");

        TableEnvironment tableEnv = StreamTableEnvironment.create(env);


        // 0. Create a Catalog and a Table
        tableEnv.executeSql("CREATE CATALOG my_catalog_local WITH (n" +
                "    'type'='paimon',n" +                           // todo: !!!
                "    'warehouse'='file:///D:/tmp/paimon'n" +
                ")");

        tableEnv.executeSql("USE CATALOG my_catalog_local");

        tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS my_catalog_local.local_db");
        tableEnv.executeSql("USE local_db");

        // 不需要再次创建表

        // convert to DataStream
        // Table table = tableEnv.sqlQuery("SELECT * FROM paimon_tbl_streams");
        Table table = tableEnv.sqlQuery("SELECT * FROM paimon_tbl_streams WHERE name is not null and age is not null");
        // DataStream<Row> dataStream = ((StreamTableEnvironment) tableEnv).toChangelogStream(table);
        // todo : doesn't support consuming update and delete changes which is produced by node TableSourceScan
        // DataStream<Row> dataStream = ((StreamTableEnvironment) tableEnv).toDataStream(table);
        // 剔除 -U 数据(即:更新前的数据不需要重新发送,剔除)!!!
        DataStream<Row> dataStream = ((StreamTableEnvironment) tableEnv)
                .toChangelogStream(table, Schema.newBuilder().primaryKey("dt","uuid").build(), ChangelogMode.upsert())
                .filter(new FilterFunction<Row>() {
                    @Override
                    public boolean filter(Row row) throws Exception {
                        boolean isNoteUpdateBefore = !(row.getKind().equals(RowKind.UPDATE_BEFORE));
                        if (!isNoteUpdateBefore) {
                            LOGGER.info("UPDATE_BEFORE: " + row.toString());
                        }
                        return isNoteUpdateBefore;
                    }
                })
                ;

        // use this datastream
        dataStream.executeAndCollect().forEachRemaining(System.out::println);

        env.execute();
    }
}

结果

二、进阶:本地(IDEA)多流拼接测试

要解决的问题:

        多个流拥有相同的主键每个更新主键外的部分字段通过主键完成多流拼接

note

        如果是两个Flink Job 或者 两个 pipeline 写同一个paimon表,则直接会产生conflict,其中一条流不断exception重启

        可以使用 “UNION ALL” 将多个合并一个流,最终一个Flink job写paimon表;

        使用主键表,mergeengine‘ = ‘partial-update

1、’changelog-producer‘ = ‘fullcompaction’

(1)multiWrite代码

package com.study.flink.table.paimon.multi;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.StatementSet;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

/**
 * @Author: YK.Leo
 * @Date: 2023-05-18 10:17
 * @Version: 1.0
 */

// Succeed as local !!!
// 而且不会产生conflict,跑5分钟没有任何异常(公司跑几天无异常)! 数据也可以在另一个job流读!
public class MultiStreamsUnionWriteV1 {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        env.enableCheckpointing(10*1000L);
        env.getCheckpointConfig().setCheckpointStorage("file:/D:/tmp/paimon/");
        TableEnvironment tableEnv = StreamTableEnvironment.create(env);

        // 0. Create a Catalog and a Table
        tableEnv.executeSql("CREATE CATALOG my_catalog_local WITH (n" +
                "    'type'='paimon',n" +                           // todo: !!!
                "    'warehouse'='file:///D:/tmp/paimon'n" +
                ")");
        tableEnv.executeSql("USE CATALOG my_catalog_local");

        tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS my_catalog_local.local_db");
        tableEnv.executeSql("USE local_db");

        // drop &amp; create tbl
        tableEnv.executeSql("DROP TABLE IF EXISTS paimon_tbl_streams");
        tableEnv.executeSql("CREATE TABLE IF NOT EXISTS paimon_tbl_streams(n"
                + " uuid bigint,n"
                + " name VARCHAR(3),n"
                + " age int,n"
                + " ts TIMESTAMP(3),n"
                + " dt VARCHAR(10), n"
                + " PRIMARY KEY (dt, uuid) NOT ENFORCED n"
                + ") PARTITIONED BY (dt) n"
                + " WITH (n" +
                "    'merge-engine' = 'partial-update',n" +
                "    'changelog-producer' = 'full-compaction', n" +
                "    'file.format' = 'orc', n" +
                "    'scan.mode' = 'compacted-full', n" +
                "    'bucket' = '5', n" +
                "    'sink.parallelism' = '5', n" +
                // "    'write_only' = 'true', n" +
                "    'sequence.field' = 'ts' n" +   // todo, to check
                ")"
        );

        // datagen ====================================================================
        tableEnv.executeSql("CREATE TEMPORARY TABLE IF NOT EXISTS source_A (n" +
                " uuid bigint PRIMARY KEY NOT ENFORCED,n" +
                " `name` VARCHAR(3)," +
                " _ts1 TIMESTAMP(3)n" +
                ") WITH (n" +
                " 'connector' = 'datagen', n" +
                " 'fields.uuid.kind'='sequence',n" +
                " 'fields.uuid.start'='0', n" +
                " 'fields.uuid.end'='1000000', n" +
                " 'rows-per-second' = '1' n" +
                ")");
        tableEnv.executeSql("CREATE TEMPORARY TABLE IF NOT EXISTS source_B (n" +
                " uuid bigint PRIMARY KEY NOT ENFORCED,n" +
                " `age` int," +
                " _ts2 TIMESTAMP(3)n" +
                ") WITH (n" +
                " 'connector' = 'datagen', n" +
                " 'fields.uuid.kind'='sequence',n" +
                " 'fields.uuid.start'='0', n" +
                " 'fields.uuid.end'='1000000', n" +
                " 'rows-per-second' = '1' n" +
                ")");

        //
        StatementSet statementSet = tableEnv.createStatementSet();
        String sqlText = "INSERT INTO paimon_tbl_streams(uuid, name, age, ts, dt) n" +
                "select uuid, name, cast(null as int) as age, _ts1 as ts, date_format(_ts1,'yyyy-MM-dd') as dt from source_A n" +
                "UNION ALL n" +
                "select uuid, cast(null as string) as name, age, _ts2 as ts, date_format(_ts2,'yyyy-MM-dd') as dt from source_B"
                ;
        statementSet.addInsertSql(sqlText);

        statementSet.execute();
    }
}

读代码同上。

(2)读延迟

        即:从client数据落到paimon,完成与serverjoin,再到被Flink-paimon流读到的时间延迟

       分钟级别延迟

2、’changelog-producer’ = ‘lookup

读写同上,建表时修改参数即可changelog-producer=’lookup,与此匹配scanmode需要分别配置‘latest

lookup延迟可能会更低,但是数据质量有待验证

note

测试,在企业生产环境fullcompaction模式目前一切稳定(两条join的流QPS约3K左右,延迟2-3分钟)。

         99.9%的数据延迟在2-3分钟

        (multiWrite的checkpoint间隔为60s时)

三、可能遇到的问题

1. Caused by: java.lang.ClassCastException: org.codehaus.janino.CompilerFactory cannot be cast to org.codehaus.commons.compiler.ICompilerFactory

原因:org.codehaus.janino 依赖冲突,

办法:全部exclude

<exclude>org.codehaus.janino:*</exclude>

2. Caused by: java.lang.ClassNotFoundException: org.apache.flink.util.function.SerializableFunction

原因:Flink steaming版本与Flink table版本不一致 或 确实相关依赖这里是paimon依赖的flink版本最低为1.14.6,与1.14.0的flink不兼容

办法:升级Flink版本到1.14.4以上

参考Flink配置Configuration | Apache Flink

3. Caused by: java.util.ServiceConfigurationError: org.apache.flink.table.factories.Factory: Provider org.apache.flink.table.store.connector.TableStoreManagedFactory not found

项目的META-INF/services路径添加 Factory 文件(这样才能匹配Flink的CatalogFactory,才能创建catalog)

4. Caused by: org.apache.flink.client.program.ProgramInvocationException: The main method caused an error: No operators defined in streaming topology. Cannot execute.

已经存在tableEnv.executeSql 或者 statementSet.execute() 时就不需要再 env.execute() 了!

5. Flink SQL不能直接使用null as,需要写成 cast(null as data_type), 如 cast(null as string);

6. 如果创建paimon分区表,必须要把分区字段放在主键中!,否则建表报错

四、展望

如果有数据格式

主键   stream_client   stream_server   ts 

1001    null                   a                         1

1001    A                      null                      2

1001    B                      null                      3

按照paimon官方实现,使用主键partial update进行多流拼接会被拼接为如下结果

1001    B    a    3;

      即:主键会被去重(取每个流里边最新一条,如果想要保留   stream_client  的全部数据,官方源码实现不了,需要进行改造!

      我们已经改造并实现了非去重的效果,后续出一篇专门的文章阐述一下改造思路和方法

想象:

      stream_client客户端数据,请求一次服务之后,可以上下滑动屏幕(或者进入回退),使某个商品产生多次曝光(但不会多次请求server端);此时 client 端产生了多条数据,server端只有一条数据。但是,client多次的曝光/点击是可以反应用户对某个商品感兴趣程度的,是有意义的数据,不应该被去重掉!

【未完待续…】

原文地址:https://blog.csdn.net/LutherK/article/details/130775956

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_28214.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注