684.冗余连接
题目:树可以看成是一个连通且 无环 的 无向 图。
给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 ai 和 bi 之间存在一条边。
请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的那个。
题目链接:684.冗余连接
代码如下:
修改join函数
class Solution {
public int[] father;
public int[] findRedundantConnection(int[][] edges) {
//构造并查集 过程中两个边根一样则删除
int n=edges.length;
father=new int[n+1];
//初始化
for(int i=1;i<=n;i++){
father[i]=i;
}
int[] result=null;
boolean flag;
for(int j=0;j<edges.length;j++){
flag=join(edges[j][0],edges[j][1]);
if(flag==true){
return new int[]{edges[j][0],edges[j][1]};
}
}
return result;
}
public int find(int u){
if(u==father[u]) return u;
else return find(father[u]);
}
boolean join(int u, int v) {
u = find(u); // 寻找u的根
v = find(v); // 寻找v的根
if (u == v) return true;
father[v] = u;
return false;
}
}
685. 冗余连接 II (再分析)
题目: 在本问题中,有根树指满足以下条件的 有向 图。该树只有一个根节点,所有其他节点都是该根节点的后继。该树除了根节点之外的每一个节点都有且只有一个父节点,而根节点没有父节点。
输入一个有向图,该图由一个有着 n 个节点(节点值不重复,从 1 到 n)的树及一条附加的有向边构成。附加的边包含在 1 到 n 中的两个不同顶点间,这条附加的边不属于树中已存在的边。
结果图是一个以边组成的二维数组 edges 。 每个元素是一对 [ui, vi],用以表示 有向 图中连接顶点 ui 和顶点 vi 的边,其中 ui 是 vi 的一个父节点。
返回一条能删除的边,使得剩下的图是有 n 个节点的有根树。若有多个答案,返回最后出现在给定二维数组的答案
题目链接: 685. 冗余连接 II
解题思路:
先判断入度 删除入度为2的边的一条 判断删除后是不是树即可
再使用并查集判断是否有环(是否有冲突 此时的冲突一定是构成环)
如何使用并查集判断删除后是不是树
因为如果两个点所在的边在添加图之前如果就可以在并查集里找到了相同的根,那么这条边添加上之后 这个图一定不是树了
如何使用并查集判断判断是否有环(有环时 附加的边指向根节点)
附加的边指向根节点,而且是在环路中的最后一条被访问到的边
class Solution {
private static final int N = 1010; // 如题:二维数组大小的在3到1000范围内
private int[] father;
public Solution() {
father = new int[N];
// 并查集初始化
for (int i = 0; i < N; ++i) {
father[i] = i;
}
}
// 并查集里寻根的过程
private int find(int u) {
if(u == father[u]) {
return u;
}
father[u] = find(father[u]);
return father[u];
}
// 将v->u 这条边加入并查集
private void join(int u, int v) {
u = find(u);
v = find(v);
if (u == v) return ;
father[v] = u;
}
// 判断 u 和 v是否找到同一个根,本题用不上
private Boolean same(int u, int v) {
u = find(u);
v = find(v);
return u == v;
}
/**
* 初始化并查集
*/
private void initFather() {
// 并查集初始化
for (int i = 0; i < N; ++i) {
father[i] = i;
}
}
/**
* 在有向图里找到删除的那条边,使其变成树
* @param edges
* @return 要删除的边
*/
private int[] getRemoveEdge(int[][] edges) {
initFather();
for(int i = 0; i < edges.length; i++) {
if(same(edges[i][0], edges[i][1])) { // 构成有向环了,就是要删除的边
return edges[i];
}
join(edges[i][0], edges[i][1]);
}
return null;
}
/**
* 删一条边之后判断是不是树
* @param edges
* @param deleteEdge 要删除的边
* @return true: 是树, false: 不是树
*/
private Boolean isTreeAfterRemoveEdge(int[][] edges, int deleteEdge)
{
initFather();
for(int i = 0; i < edges.length; i++)
{
if(i == deleteEdge) continue;
if(same(edges[i][0], edges[i][1])) { // 构成有向环了,一定不是树
return false;
}
join(edges[i][0], edges[i][1]);
}
return true;
}
public int[] findRedundantDirectedConnection(int[][] edges) {
int[] inDegree = new int[N];
for(int i = 0; i < edges.length; i++)
{
// 入度
inDegree[ edges[i][1] ] += 1;
}
// 找入度为2的节点所对应的边,注意要倒序,因为优先返回最后出现在二维数组中的答案
ArrayList<Integer> twoDegree = new ArrayList<Integer>();
for(int i = edges.length - 1; i >= 0; i--)
{
if(inDegree[edges[i][1]] == 2) {
twoDegree.add(i);
}
}
// 处理图中情况1 和 情况2
// 如果有入度为2的节点,那么一定是两条边里删一个,看删哪个可以构成树
if(!twoDegree.isEmpty())
{
if(isTreeAfterRemoveEdge(edges, twoDegree.get(0))) {
return edges[ twoDegree.get(0)];
}
return edges[ twoDegree.get(1)];
}
// 明确没有入度为2的情况,那么一定有有向环,找到构成环的边返回就可以了
return getRemoveEdge(edges);
}
}
原文地址:https://blog.csdn.net/weixin_44925329/article/details/134728614
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_28844.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!