本文介绍: 某马点评day02

什么缓存

添加Redis缓存

添加商铺缓存

Controller层中

    /**
     * 根据id查询商铺信息
     * @param id 商铺id
     * @return 商铺详情数据
     */
    @GetMapping("/{id}")
    public Result queryShopById(@PathVariable("id") Long id) {
        return shopService.queryById(id);
    }

Service层中

 */
@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {

    @Resource
    private StringRedisTemplate stringRedisTemplate;
    @Override
    public Result queryById(Long id) {
        String key="cache:shop:" + id;
        //1.从Redis查询缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        //2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            //3.存在,直接返回
            Shop shop = JSONUtil.toBean(shopJson, Shop.class);
            return Result.ok(shop);
        }
        //4.不存在,根据id查询数据库
        Shop shop = getById(id);
        if (shop==null) {
            //5.不存在,返回错误
            return Result.fail("店铺不存在");
        }
        //6.存在,写入Redis
        stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop));
        //7.返回
        return Result.ok(shop);
    }
}

练习添加店铺类型缓存

Controller层中

@RestController
@RequestMapping("/shop-type")
public class ShopTypeController {
    @Resource
    private IShopTypeService typeService;

    @GetMapping("list")
    public Result queryTypeList() {
       return typeService.queryTypeList();
    }
}

Service层中

    @Override
    public Result queryTypeList() {
        String key="cache:shopType";
        //1.从Redis查询缓存
        String shopType = stringRedisTemplate.opsForValue().get(key);
        //2.判断是否存在
        if (StrUtil.isNotBlank(shopType)) {
            //3.存在,直接返回
            List<ShopType> typeList = JSONUtil.toList(shopType, ShopType.class);
            return Result.ok(typeList);
        }
        //4.不存在,查询数据库
        List<ShopType> typeList = query().orderByAsc("sort").list();
        //5.存在,写入Redis
        stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(typeList));
        //7.返回
        return Result.ok(typeList);
    }

缓存更新策略

 通常选择方案都是第一种

单体系统可以通过@Transactional注解完成事务

通常是先操作数据库,再删除缓存,出现问题的几率极小。

 

 实现商铺缓存数据库双写一致

第一个地方,写入Redis时加上超时时间。 

  //6.存在,写入Redis
        stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);

 第二个地方

controller

    /**
     * 更新商铺信息
     * @param shop 商铺数据
     * @return 无
     */
    @PutMapping
    public Result updateShop(@RequestBody Shop shop) {
        return shopService.update(shop);
    }

service

    @Override
    public Result update(Shop shop) {
        Long id = shop.getId();
        if(id==null){
            return Result.fail("店铺id不能为空");
        }
        //1.更新数据库
        updateById(shop);
        //2.删除缓存
        stringRedisTemplate.delete(CACHE_SHOP_KEY+id);
        return null;
    }

缓存穿透

布隆过滤器实现不是真的存储数据,而是用某种Hash算法计算之后用二进制压缩之类的方法保存是否存在。但是,也有可能多个数据hash值相同导致错误结果

编码解决商铺查询缓存穿透(缓存空对象做法)

 代码修改

    @Override
    public Result queryById(Long id) {
        String key=CACHE_SHOP_KEY+ id;
        //1.从Redis查询缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        //2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            //3.存在,直接返回
            Shop shop = JSONUtil.toBean(shopJson, Shop.class);
            return Result.ok(shop);
        }
        //判断命中的是否是空值
        if(shopJson!=null){
            //返回一个错误信息
            return Result.fail("店铺不存在");
        }
        //4.不存在,根据id查询数据库
        Shop shop = getById(id);
        if (shop==null) {
            //将空值写入Redis
            stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);
            //5.不存在,返回错误
            return Result.fail("店铺不存在");
        }
        //6.存在,写入Redis
        stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);
        //7.返回
        return Result.ok(shop);
    }

 限流可以sentinel实现.

缓存雪崩

宕机时降级限流也是用sentinel实现。

nginx缓存也是一级缓存.

tmd,一直在说springcloud里面有讲。

缓存击穿

常见解决方案

这里可以参考一下redisson源码设计思路,设计一个监听通知机制! 

逻辑过期解决方案不会设置ttl过期时间,而是新增一个exprie字段,从redis里面查询发现是过期数据时就需要加锁开启一个线程更新缓存,然后直接返回旧数据。有别的线程获取失败说明已经有线程在进行更新,所以就直接返回过期数据,避免了过多线程等待锁。

 

利用互斥解决缓存击穿问题(重点)

这里的锁不能用locksynchronized进行互斥实现,这两个会一直等待.这里用到Redis的一个命令setnx, 这个是一旦设置之后就不能修改,只能删除,但是如果因为意外原因导致迟迟不能删除会有大问题,所以这里会给锁设置一个有效期.

 代码修改

@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {

    @Resource
    private StringRedisTemplate stringRedisTemplate;
    @Override
    public Result queryById(Long id) {
        //缓存穿透
        //Shop shop=queryWithPassThrouh(id);
        //互斥解决缓存击穿
        Shop shop = queryWithMutex(id);
        if(shop==null){
            return Result.fail("店铺不存在!");
        }
        //7.返回
        return Result.ok(shop);
    }

    public Shop queryWithMutex(Long id){
        String key=CACHE_SHOP_KEY+ id;
        //1.从Redis查询缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        //2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            //3.存在,直接返回
            return JSONUtil.toBean(shopJson, Shop.class);
        }
        //判断命中的是否是空值
        if(shopJson!=null){
            //返回一个错误信息
            return null;
        }
        //4.实现缓存重建
        //4.1获取互斥锁
        String lockkey="lock:shop:"+id;
        Shop shop = null;
        try {
            boolean isLock = tryLock(lockkey);
            //4.2判断是否获取成功
            if(!isLock){
                //4.3失败休眠重试
                Thread.sleep(50);
              return  queryWithMutex(id);   //这里有可能会出现栈溢出的情况。
            }
            //获取成功之后应该再次检查缓存是否存在,有可能别的线程已经重建完了缓存,所以这里就无需再重建缓存
            shopJson = stringRedisTemplate.opsForValue().get(key);
            //再次判断是否存在
            if (StrUtil.isNotBlank(shopJson)) {
                //存在,直接返回
                return JSONUtil.toBean(shopJson, Shop.class);
            }
            //4.4根据id查询数据库
            shop = getById(id);
            //模拟重建的延时
            Thread.sleep(200);
            if (shop==null) {
                //将空值写入Redis
                stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);
                //5.不存在,返回错误
                return shop;
            }
            //6.存在,写入Redis
            stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            //7.释放互斥锁
            unlock(lockkey);
        }
        //8.返回
        return shop;
    }

    public Shop queryWithPassThrouh(Long id){
        String key=CACHE_SHOP_KEY+ id;
        //1.从Redis查询缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        //2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            //3.存在,直接返回
            Shop shop = JSONUtil.toBean(shopJson, Shop.class);
            return shop;
        }
        //判断命中的是否是空值
        if(shopJson!=null){
            //返回一个错误信息
            return null;
        }
        //4.不存在,根据id查询数据库
        Shop shop = getById(id);
        if (shop==null) {
            //将空值写入Redis
            stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);
            //5.不存在,返回错误
            return shop;
        }
        //6.存在,写入Redis
        stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);
        //7.返回
        return shop;
    }

    private boolean tryLock(String key){
        Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
        return BooleanUtil.isTrue(flag);
    }

    private void unlock(String key){
        stringRedisTemplate.delete(key);
    }


    @Override
    public Result update(Shop shop) {
        Long id = shop.getId();
        if(id==null){
            return Result.fail("店铺id不能为空");
        }
        //1.更新数据库
        updateById(shop);
        //2.删除缓存
        stringRedisTemplate.delete(CACHE_SHOP_KEY+id);
        return null;
    }
}

这里可以上Jmeter进行压测,上100个线程进行测试

但是最终实际只查询了一次数据库

利用逻辑过期解决缓存击穿问题(重点)

 为了能增加一逻辑过期时间的字段,新建一个对象

@Data
public class RedisData {
    private LocalDateTime expireTime;
    private Object data;
}

代码修改

@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {

    @Resource
    private StringRedisTemplate stringRedisTemplate;
    @Override
    public Result queryById(Long id) {
        //缓存穿透
        //Shop shop=queryWithPassThrouh(id);
        //互斥解决缓存击穿
//        Shop shop = queryWithMutex(id);

        //逻辑过期解决缓存击穿问题
        Shop shop = queryWithLogicalExpire(id);
        if(shop==null){
            return Result.fail("店铺不存在!");
        }
        //7.返回
        return Result.ok(shop);
    }


    private static final ExecutorService CACHE_REBUILD_EXECUTOR= Executors.newFixedThreadPool(10);
    public Shop queryWithLogicalExpire(Long id){
        String key=CACHE_SHOP_KEY+ id;
        //1.从Redis查询缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        //2.判断是否存在
        if (StrUtil.isBlank(shopJson)) {
            //3.存在,直接返回null
            return null;
        }
        //4.命中,需要先把json序列化对象
        RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);
        Shop shop = JSONUtil.toBean((JSONObject)redisData.getData(), Shop.class);
        LocalDateTime expireTime = redisData.getExpireTime();
        //5.判断是否过期
        if(expireTime.isAfter(LocalDateTime.now())){
            //5.1未过期,直接返回店铺信息
            return shop;
        }
        //5.2已过期,需要缓存重建
        //6.缓存重建
        //6.1获取互斥锁
        String lockKey=LOCK_SHOP_KEY+id;
        boolean isLock = tryLock(lockKey);
        //6.2判断是否获取锁成功
        if(isLock){
            //这里应该再次检测缓存是否过期,做双重判断,如果没过期就不需重建了,因为可能别的线程已经重建了
             shopJson = stringRedisTemplate.opsForValue().get(key);
             redisData = JSONUtil.toBean(shopJson, RedisData.class);
            expireTime = redisData.getExpireTime();
            if(expireTime.isAfter(LocalDateTime.now())){
                //返回前先释放锁
                unlock(lockKey);
                //5.1未过期,直接返回店铺信息
                return shop;
            }
            //6.3成功,开启独立线程,实现缓存重建
            CACHE_REBUILD_EXECUTOR.submit(()->{
                try {
                    //重建缓存
                    this.saveShop2Redis(id,20L);
                } catch (Exception e) {
                    throw new RuntimeException(e);
                } finally {
                    //释放锁
                    unlock(lockKey);
                }
            });
        }
        //6.4失败,返回过期商铺信息。
        return shop;
    }

    public Shop queryWithMutex(Long id){
        String key=CACHE_SHOP_KEY+ id;
        //1.从Redis查询缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);

        //2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            //3.存在,直接返回
            return JSONUtil.toBean(shopJson, Shop.class);
        }
        //判断命中的是否是空值
        if(shopJson!=null){
            //返回一个错误信息
            return null;
        }
        //4.实现缓存重建
        //4.1获取互斥锁
        String lockkey="lock:shop:"+id;
        Shop shop = null;
        try {
            boolean isLock = tryLock(lockkey);
            //4.2判断是否获取成功
            if(!isLock){
                //4.3失败休眠重试
                Thread.sleep(50);
              return  queryWithMutex(id);   //这里有可能会出现栈溢出的情况。
            }
            //获取成功之后应该再次检查缓存是否存在,有可能别的线程已经重建完了缓存,所以这里就无需再重建缓存
            shopJson = stringRedisTemplate.opsForValue().get(key);
            //再次判断是否存在
            if (StrUtil.isNotBlank(shopJson)) {
                //存在,直接返回
                return JSONUtil.toBean(shopJson, Shop.class);
            }
            //4.4根据id查询数据库
            shop = getById(id);
            //模拟重建的延时
            //Thread.sleep(200);
            if (shop==null) {
                //将空值写入Redis
                stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);
                //5.不存在,返回错误
                return shop;
            }
            //6.存在,写入Redis
            stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            //7.释放互斥锁
            unlock(lockkey);
        }
        //8.返回
        return shop;
    }

    public Shop queryWithPassThrouh(Long id){
        String key=CACHE_SHOP_KEY+ id;
        //1.从Redis查询缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        //2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            //3.存在,直接返回
            Shop shop = JSONUtil.toBean(shopJson, Shop.class);
            return shop;
        }
        //判断命中的是否是空值
        if(shopJson!=null){
            //返回一个错误信息
            return null;
        }
        //4.不存在,根据id查询数据库
        Shop shop = getById(id);
        if (shop==null) {
            //将空值写入Redis
            stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);
            //5.不存在,返回错误
            return shop;
        }
        //6.存在,写入Redis
        stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);
        //7.返回
        return shop;
    }

    private boolean tryLock(String key){
        Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
        return BooleanUtil.isTrue(flag);
    }

    private void unlock(String key){
        stringRedisTemplate.delete(key);
    }

    public void saveShop2Redis(Long id,Long expireSeconds) throws InterruptedException {
        //1.查询店铺数据
        Shop shop = getById(id);
        //模拟延时
//        Thread.sleep(200);
        //2.封装逻辑过期时间
        RedisData redisData = new RedisData();
        redisData.setData(shop);
        redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));
        //3.写入Redis
        stringRedisTemplate.opsForValue().set(CACHE_SHOP_KEY+id,JSONUtil.toJsonStr(redisData));
    }

    @Override
    public Result update(Shop shop) {
        Long id = shop.getId();
        if(id==null){
            return Result.fail("店铺id不能为空");
        }
        //1.更新数据库
        updateById(shop);
        //2.删除缓存
        stringRedisTemplate.delete(CACHE_SHOP_KEY+id);
        return null;
    }
}

缓存工具封装(重点)

封装工具类里用到实体

@Data
public class RedisData {
    private LocalDateTime expireTime;
    private Object data;
}

工具代码

@Slf4j
@Component
public class CacheClient {
    @Resource
    private StringRedisTemplate stringRedisTemplate;
    String LOCK_SHOP_KEY="lock:shop:";
    
    public CacheClient(StringRedisTemplate stringRedisTemplate) {
        this.stringRedisTemplate = stringRedisTemplate;
    }
    public  void set(String key, Object value, Long time, TimeUnit timeUnit){
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value),time,timeUnit);
    }

    public  void setWithLogicalExpire(String key, Object value, Long time, TimeUnit timeUnit){
        //设置逻辑过期
        RedisData redisData = new RedisData();
        redisData.setData(value);
        redisData.setExpireTime(LocalDateTime.now().plusSeconds(timeUnit.toSeconds(time)));
        //写入Redis
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));
    }

    public <R,ID> R queryWithPassThrough(
            String keyPrefix, ID id, Class<R> type, Function<ID,R>dbFallback, Long time, TimeUnit timeUnit){
        String key=keyPrefix+id;
        //1.从Redis查询缓存
        String json = stringRedisTemplate.opsForValue().get(key);
        //2.判断是否存在
        if (StrUtil.isNotBlank(json)) {
            //3.存在,直接返回
            return  JSONUtil.toBean(json, type);
        }
        //判断命中的是否是空值
        if(json!=null){
            //返回一个错误信息
            return null;
        }
        //4.不存在,根据id查询数据库
        R r=dbFallback.apply(id);
        //5.不存在,返回错误
        if (r==null) {
            //将空值写入Redis
            stringRedisTemplate.opsForValue().set(key,"",2L, TimeUnit.MINUTES);
            return null;
        }
        //6.存在,写入Redis
        this.set(key,r,time,timeUnit);
        //7.返回
        return r;
    }

    private static final ExecutorService CACHE_REBUILD_EXECUTOR= Executors.newFixedThreadPool(10);
    public <R,ID> R queryWithLogicalExpire(
            String keyPrefix, ID id, Class<R> type, Function<ID,R>dbFallback, Long time, TimeUnit timeUnit){
        String key=keyPrefix+ id;
        //1.从Redis查询缓存
        String json = stringRedisTemplate.opsForValue().get(key);
        //2.判断是否存在
        if (StrUtil.isBlank(json)) {
            //3.存在,直接返回null
            return null;
        }
        //4.命中,需要先把json反序列化对象
        RedisData redisData = JSONUtil.toBean(json, RedisData.class);
        R r = JSONUtil.toBean((JSONObject)redisData.getData(), type);
        LocalDateTime expireTime = redisData.getExpireTime();
        //5.判断是否过期
        if(expireTime.isAfter(LocalDateTime.now())){
            //5.1未过期,直接返回店铺信息
            return r;
        }
        //5.2已过期,需要缓存重建
        //6.缓存重建
        //6.1获取互斥锁
        String lockKey=LOCK_SHOP_KEY+id;
        boolean isLock = tryLock(lockKey);
        //6.2判断是否获取锁成功
        if(isLock){
            //这里应该再次检测缓存是否过期,做双重判断,如果没过期就不需重建了,因为可能别的线程已经重建了
            json = stringRedisTemplate.opsForValue().get(key);
            redisData = JSONUtil.toBean(json, RedisData.class);
            r = JSONUtil.toBean((JSONObject)redisData.getData(), type);
            expireTime = redisData.getExpireTime();
            if(expireTime.isAfter(LocalDateTime.now())){
                //返回前先释放锁
                unlock(lockKey);
                //5.1未过期,直接返回店铺信息
                return r;
            }
            //6.3成功,开启独立线程,实现缓存重建
            CACHE_REBUILD_EXECUTOR.submit(()->{
                try {
                    //重建缓存
                    //查询数据库
                    R r1 = dbFallback.apply(id);
                    //写入Redis
                    this.setWithLogicalExpire(key,r1,time,timeUnit);
                } catch (Exception e) {
                    throw new RuntimeException(e);
                } finally {
                    //释放锁
                    unlock(lockKey);
                }
            });
        }
        //6.4失败,返回过期信息。
        return r;
    }

    private boolean tryLock(String key){
        Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
        return BooleanUtil.isTrue(flag);
    }

    private void unlock(String key){
        stringRedisTemplate.delete(key);
    }
}

Service层修改后代码

里面有缓存穿透调用,也有缓存击穿的调用.

@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {

    @Resource
    private StringRedisTemplate stringRedisTemplate;

    @Resource
    private CacheClient cacheClient;
    @Override
    public Result queryById(Long id) {
        //缓存穿透
        Shop shop=cacheClient.queryWithPassThrough(CACHE_SHOP_KEY,id, Shop.class,id2->getById(id2),CACHE_SHOP_TTL,TimeUnit.MINUTES);
        //Shop shop=cacheClient.queryWithPassThrough(CACHE_SHOP_KEY,id, Shop.class,this::getById,,CACHE_SHOP_TTL,TimeUnit.MINUTES);
        //互斥锁解决缓存击穿
        //Shop shop = queryWithMutex(id);
        //逻辑过期解决缓存击穿问题
//        Shop shop = cacheClient
//                .queryWithLogicalExpire(CACHE_SHOP_KEY,id,Shop.class,this::getById,CACHE_SHOP_TTL,TimeUnit.SECONDS);
        if(shop==null){
            return Result.fail("店铺不存在!");
        }
        //7.返回
        return Result.ok(shop);
    }


    @Override
    public Result update(Shop shop) {
        Long id = shop.getId();
        if(id==null){
            return Result.fail("店铺id不能为空");
        }
        //1.更新数据库
        updateById(shop);
        //2.删除缓存
        stringRedisTemplate.delete(CACHE_SHOP_KEY+id);
        return null;
    }
}

内容总结:

去看文档资料里面xmind文档,那个里面总结的很好。

原文地址:https://blog.csdn.net/m0_62327332/article/details/134742124

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_29626.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注