本文介绍: 不做特别处理,深度学习默认参数精度为浮点32位精度(FP32)。大模型参数庞大,10-1000B级别,如果不注意优化,既耗费大量的显卡资源,也耗费大量的训练时间。有的地方32位精度没有太大必要,这就是浮点精度和量化的动力来源。大模型的训练和预测过程中,如何加快训练速度?如何降低显存占用?有哪些简单的方法?
GPT实战系列-大模型训练和预测,如何加速、降低显存
不做特别处理,深度学习默认参数精度为浮点32位精度(FP32)。大模型参数庞大,10-1000B级别,如果不注意优化,既耗费大量的显卡资源,也耗费大量的训练时间,AI算法中心的训练的投入都给英伟达送钱去了。有的地方32位精度没有太大必要,这就是浮点精度和量化的动力来源。
大模型的训练和预测过程中,如何加快训练速度?如何降低显存占用?
有哪些简单,快速上手的方法?
混合精度
混合精度训练(mixed precision training)是一种加速深度学习训练的技术。其主要思想是在精度降低可忍受的范围内,使用较低精度的浮点数(如FP16)来表示神经网络中的权重和激活值,从而减少内存使用和计算开销,进而加速训练过程。
由于FP16精度较低,表示的数值范围小,可能会导致精度损失,因此在混合精度训练中,需要使用一些技巧来保持模型的精确性。例如,可以使用梯度缩放(GradScaler)来控制梯度的大小,以避免梯度下降过快而影响模型的准确性。
精度数位表示
量化
量化训练
量化推理
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。