本文介绍: 一种通常的做法是忽略文本中的词序关系,假设各个特征词的位置都是可以互换的,即词袋模型(Bag Of Word,BOW)。基于以上条件的贝叶斯模型,称为。计算机,t2 = 排球,t3 = 运动会,t4 = 高校,t5 = 大学,y = 1表示教育类,y = 0表示体育类,可以得到如下参数估计结果。在朴素贝叶斯分类器中,特征之间的独立性假设是一个简化,但在实际应用中,该方法在垃圾邮件过滤等任务上表现良好。从参数估计的结果例可以看出,在多项式分布假设下,频率正是概率的最大似然估计值,例如,类别概率。
贝叶斯分类
公式
决策规则
优点
贝叶斯分类器的例子——垃圾邮件问题
1. 特征(输入):
2. 类别:
3. 数据:
4. 模型训练:
注:类别先验概率
5. 模型预测:
朴素贝叶斯模型
模型定位&模型假设
模型算法
例子
sklearn朴素贝叶斯代码实现
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。