报错情况
报错一
print("是否可用:", torch.cuda.is_available()) # 查看GPU是否可用
print("GPU数量:", torch.cuda.device_count()) # 查看GPU数量
print("torch方法查看CUDA版本:", torch.version.cuda) # torch方法查看CUDA版本
print("GPU索引号:", torch.cuda.current_device()) # 查看GPU索引号
print("GPU名称:", torch.cuda.get_device_name(1)) # 根据索引号得到GPU名称
是否可用: True
...
RuntimeError: The NVIDIA driver on your system is too old (found version 10020).
报错二
同样的命令
print("是否可用:", torch.cuda.is_available()) # 查看GPU是否可用
print("GPU数量:", torch.cuda.device_count()) # 查看GPU数量
print("torch方法查看CUDA版本:", torch.version.cuda) # torch方法查看CUDA版本
print("GPU索引号:", torch.cuda.current_device()) # 查看GPU索引号
print("GPU名称:", torch.cuda.get_device_name(1)) # 根据索引号得到GPU名称
是否可用: False
...
AssertionError: Torch not compiled with CUDA enabled
解决办法
nvidia-smi
查看得到结果:
得到服务器的CUDA版本为10.2.
然后去torch官网中查看老版本CUDA适配的torch版本:
https://pytorch.org/get-started/previous-versions/
下面就要在镜像源中找到这样的torch版本:1.12.1以及适配gpu
https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
这就是我们要找的。右键点击蓝字,’右键‘-‘复制链接地址‘,得到下载链接,直接用这个包安装pytorch:
conda install https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/linux-64/pytorch-1.12.1-py3.8_cuda10.2_cudnn7.6.5_0.tar.bz2
conda install pytorch
这样就安装成功了,再次调用以上python命令测试CUDA:
print("是否可用:", torch.cuda.is_available()) # 查看GPU是否可用
print("GPU数量:", torch.cuda.device_count()) # 查看GPU数量
print("torch方法查看CUDA版本:", torch.version.cuda) # torch方法查看CUDA版本
print("GPU索引号:", torch.cuda.current_device()) # 查看GPU索引号
print("GPU名称:", torch.cuda.get_device_name(1)) # 根据索引号得到GPU名称
得到结果:
True
2
10.2
0
Tesla T4
torchvision也是同理:
conda install https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/linux-64/torchvision-0.13.1-py38_cu102.tar.bz2
conda install torchvision
然后具体介绍一下这几个报错,这样也把我一路摸着石头过河的经历给复述一下。
报错RuntimeError: The NVIDIA driver on your system is too old (found version 10020).的原因
比如我的环境中就是10.2的CUDA和1.13.0(或者1.13.1,反正是1.13版本)的pytorch冲突了。
NVIDIA too old解决办法
-
降低pytorch版本。
-
升级CUDA。
解决办法很多,可以参考网上其他文章。本文重点在第二个报错Torch和CUDA的编译(compile)问题,因为我自己是使用学校的机房,没权限升级CUDA,所以介绍一下我尝试过的第一个办法,降低pytorch版本:
你在看这一段时,会发现前面和我最终的解决方法是一样的,但后面不同的方法让我走了弯路。
首先确定你的CUDA版本,在Linux命令行终端中输入nvidia–smi:
nvidia-smi
查看得到结果:
得到服务器的CUDA版本为10.2.
然后去torch官网中查看老版本CUDA适配的torch版本:
https://pytorch.org/get-started/previous-versions/
好了,到这一步,你可能就会按照它上面的操作,安装这几个版本的库了。
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=10.2 -c pytorch
-
某个包版本和其他包冲突
可能你改进了第一、二个问题,终于把整套pytorch、torchvision下下来了,但你还是要面对第三个问题,就是继而报错AssertionError: Torch not compiled with CUDA enabled,不过我一步步介绍我的经历,先看看如何面对第一和第二个问题的:
conda install --override-channels -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ pytorch torchvision cudatoolkit=10.2
这条命令是说,指定使用镜像源https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/,指定cudatoolkit版本适配10.2的CUDA,然后根据这个适配,下载pytorch包和torchvision包。
下载好了,尝试代码,你会得到:
print("是否可用:", torch.cuda.is_available()) # 查看GPU是否可用
print("GPU数量:", torch.cuda.device_count()) # 查看GPU数量
print("torch方法查看CUDA版本:", torch.version.cuda) # torch方法查看CUDA版本
print("GPU索引号:", torch.cuda.current_device()) # 查看GPU索引号
print("GPU名称:", torch.cuda.get_device_name(1)) # 根据索引号得到GPU名称
(输出结果:)
是否可用: False
...
AssertionError: Torch not compiled with CUDA enabled
这就是第二个报错了。
报错AssertionError: Torch not compiled with CUDA enabled的原因
而第二个报错则是因为你安装的torch是cpu版本的。比如你可以在你的conda环境下查找torch版本:
conda list | grep torch
结果如下:
(base) weinz@dlp01:~$ conda list | grep torch
(正常使用命令无法看到下面注释的一行,为了直观显示,我粘贴过来了)
# Name Version Build Channel
pytorch 1.12.1 cpu_py38he8d8e81_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
torchvision 0.13.1 cpu_py38h164cc8f_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
其中包版本号Version后面的Build列,就能看到torch适配的是cpu版本。
具体方法就接上我最终的解决方案了:
具体解决方法
在镜像源中找到1.12.1以及适配gpu的pytorch、torchvision
进入镜像源https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
这就是我们要找的。右键-复制链接地址,直接用这个包安装pytorch:
conda install https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/linux-64/pytorch-1.12.1-py3.8_cuda10.2_cudnn7.6.5_0.tar.bz2
conda list | grep torch
得到结果:
conda install pytorch
这样就安装成功了,再次调用以上python命令测试CUDA:
print("是否可用:", torch.cuda.is_available()) # 查看GPU是否可用
print("GPU数量:", torch.cuda.device_count()) # 查看GPU数量
print("torch方法查看CUDA版本:", torch.version.cuda) # torch方法查看CUDA版本
print("GPU索引号:", torch.cuda.current_device()) # 查看GPU索引号
print("GPU名称:", torch.cuda.get_device_name(1)) # 根据索引号得到GPU名称
得到结果:
True
2
10.2
0
Tesla T4
torchvision也是同理:
conda install https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/linux-64/torchvision-0.13.1-py38_cu102.tar.bz2
conda install torchvision
总结
看着网上的文章,还有问chatGPT,一步步解决了这个问题,还是值得的。
conda install -c 镜像源 后面调试版本
conda install -c 'http...' pytorch=1.12.1 torchvision=0.13.0 cudatoolkit=10.2
conda install -c 'http...' pytorch=1.9.1 torchvision=0.8.0 cudatoolkit=10.2
...
一步步调版本,我在调的时候发现太搞了,而且试出来下好配套的了,可能下的也是cpu版本的。
https://blog.csdn.net/u013468614/article/details/125910538
可能更了解镜像源内部选择的方式,会有更好的解决方法。不过在此之前,这种直接下载你需要的版本然后让镜像源给你补依赖包才是最高效的方法。
原文地址:https://blog.csdn.net/m0_46948660/article/details/129205116
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_30286.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!