一、介绍

职位招聘管理与推荐系统。本系统使用Python作为主要开发语言,以WEB网页平台方式进行呈现前端使用HTML、CSS、Ajax、BootStrap等技术,后端使用Django框架处理用户请求
系统创新点:相对传统管理系统,本系统使用协同过滤推荐算法基于用户对职位评分数据基础,对当前用户进行个性化的职位推荐。
主要功能如下

二、系统部分效果图展示

img_11_30_21_00_17

img_11_30_21_00_33

img_11_30_21_00_45

img_11_30_21_00_55

img_11_30_21_01_07

三、演示视频+代码+安装

地址https://www.yuque.com/ziwu/yygu3z/hfnmohf9n5gqfnd7

四、协同过滤推荐算法介绍

协同过滤算法是推荐系统的核心技术之一,起源于20世纪90年代。它的基本思想是:如果两个人在过去喜欢相似的东西,那么他们在未来也可能喜欢相似的东西。协同过滤可以分为两类:基于用户的和基于物品的。
基于用户的协同过滤(Userbased Collaborative Filtering关注于找出拥有相似喜好的用户。例如,如果用户A和用户B在过去喜欢了许多相同的电影,那么用户A喜欢的其他电影可能会被用户B喜欢。它的特点是直观、易于实现
接下来,我将用Python实现一个简单基于用户的协同过滤算法

import numpy as np

# 生成一个示例用户-物品评分矩阵
ratings = np.array([
    [5, 4, 0, 1],
    [4, 0, 4, 1],
    [1, 2, 3, 3],
    [0, 1, 2, 4],
])

# 计算用户之间的相似
def calculate_similarity(ratings):
    # 用户数量
    n_users = ratings.shape[0]
    # 初始化相似矩阵
    similarity = np.zeros((n_users, n_users))
    for i in range(n_users):
        for j in range(n_users):
            # 计算用户i和用户j的相似
            rating_i = ratings[i, :]
            rating_j = ratings[j, :]
            # 只考虑双方都评分项目
            common_ratings = np.where((rating_i > 0) & (rating_j > 0))[0]
            if len(common_ratings) == 0:
                similarity[i, j] = 0
            else:
                # 使用余弦相似
                similarity[i, j] = np.dot(rating_i[common_ratings], rating_j[common_ratings]) / (np.linalg.norm(rating_i[common_ratings]) * np.linalg.norm(rating_j[common_ratings]))
    return similarity

# 生成推荐
def recommend(ratings, similarity, user_index):
    scores = np.dot(similarity, ratings)
    # 除以每个用户的相似总和
    sum_similarity = np.array([np.abs(similarity).sum(axis=1)])
    scores = scores / sum_similarity.T
    # 返回推荐结果
    return scores[user_index]

# 计算用户相似
user_similarity = calculate_similarity(ratings)
# 为第一个用户生成推荐
user_recommendation = recommend(ratings, user_similarity, 0)

print("推荐分数:", user_recommendation)

在这段代码中,首先创建一个简单的用户-物品评分矩阵然后计算了用户之间的相似度,并基于这些相似度生成了针对特定用户的推荐。这里使用了余弦相似度来衡量用户之间的相似程度,这是协同过滤中常见方法之一。

原文地址:https://blog.csdn.net/meridian002/article/details/134755767

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_30488.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注