Hi-Net:用于多模态MR图像合成的混合融合网络
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 9, SEPTEMBER 2020
背景
磁共振成像(MRI)是一种广泛使用的神经成像技术,可以提供不同对比度(即模态)的图像。事实证明,在许多任务中,融合这些多模态数据对于提高模型性能特别有效。然而,由于数据质量差和患者频繁辍学,为每位患者收集所有模式仍然是一项挑战。医学图像合成已被提出作为一种有效的解决方案,其中任何缺失的模态都是从现有模态合成的。
贡献
首先学习特定于模态的网络,以从每个单独的模态捕获信息。该网络被形成为自动编码器,以有效地学习高级特征表示。然后,提出了一种融合网络来利用多种模态之间的相关性。我们还提出了一种分层多模态融合策略,该策略可以有效地利用不同特征层之间的相关性。此外,还提出了一种MFB来自适应地加权不同的融合策略(即元素求和、乘积和最大化)。最后,我们的Hi-Net将模态特定网络和融合网络相结合,以学习各种模态的潜在表示,并用于生成目标图像
实验
数据集:BraTs2018,裁剪到160x180,还评估了在缺血性中风病变分割挑战2015(ISLES2015)数据集上使用T1和Flair图像合成T2模态图像的性能[49]
消融实验:
(1) We use the “ConcateFusion” strategy both in the fusion network and generator network, denoted as “Oursdegraded1”;
(2) We use MFB modules in the fusion network and the “ConcateFusion” in the generator network, denoted as “Ours–degraded2”;
(3) We use the “ConcateFusion” in the fusion network and MFB modules in the generator network, denoted as “Ours–degraded3”