本文介绍: 多源数据目录(Multi-Catalog功能,旨在能够更方便对接外部数据目录,以增强Doris数据分析和联邦数据查询能力。在之前的 Doris 版本中,用户数据只有两个层级:Database 和 Table。当我们需要连接一个外部数据目录时,我们只能在Database 或 Table 层级进行对接比如通过create external table方式创建一个外部数据目录中的表的映射,或通过create external database方式映射一个外部数据目录中的 Database

1.概览

多源数据目录(Multi-Catalog功能,旨在能够更方便对接外部数据目录,以增强Doris的数据湖分析和联邦数据查询能力

在之前的 Doris 版本中,用户数据只有两个层级:Database 和 Table。当我们需要连接一个外部数据目录时,我们只能在Database 或 Table 层级进行对接比如通过 create external table 的方式创建一个外部数据目录中的表的映射,或通过 create external database 的方式映射一个外部数据目录中的 Database。如果外部数据目录中的 Database 或 Table 非常多,则需要用户手动进行一一映射,使用体验不佳。

而新的 Multi-Catalog 功能在原有的元数据层级上,新增一层Catalog,构成 Catalog -> Database -> Table 的三层元数据层级。其中,Catalog 可以直接对应到外部数据目录。目前支持的外部数据目录包括:

  1. Apache Hive
  2. Apache Iceberg
  3. Apache Hudi
  4. Elasticsearch
  5. JDBC: 对接数据库访问标准接口(JDBC)来访问各式数据库的数据。
  6. Apache Paimon(Incubating)

该功能将作为之前外表连接方式(External Table)的补充和增强,帮助用户进行快速的多数据目录联邦查询

这篇教程展示如何使用 Flink + paimon + Doris 构建实时湖仓一体的联邦查询分析,Doris 2.0.3 版本提供了 的支持,本文主要展示 Doris 和 paimon 怎么使用,同时本教程整个环境是都基于分布式环境搭建大家按照步骤可以一步完成完整体验整个搭建操作过程

2. 环境

教程演示环境如下

  1. Apache doris 2.0.2
  2. Hadoop 3.3.3
  3. hive 3.1.3
  4. Fink 1.17.1
  5. Apache paimon 0.5.0
  6. JDK 1.8.0_311

3. 安装

  1. 下载 Flink 1.17.1
    wget https://dlcdn.apache.org/flink/flink-1.17.1/flink-1.17.1-bin-scala_2.12.tgz
    ## 解压安装
    tar zxf flink-1.17.1-binscala_2.12.tgz
  2. 下载相关依赖到 Flink/lib 目录
cp /Users/zhangfeng/hadoop/hadoop-3.3.6/share/hadoop/mapreduce/hadoop-mapreduce-client-core-3.3.6.jar ./lib/
wget https://repo1.maven.org/maven2/org/apache/paimon/paimon-flink-1.17/0.5.0-incubating/paimon-flink-1.17-0.5.0-incubating.jar
wget https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-mysql-cdc/2.4.2/flink-sql-connector-mysql-cdc-2.4.2.jar
wget https://repo.maven.apache.org/maven2/org/apache/flink/flink-sql-connector-hive-3.1.3_2.12/1.17.1/flink-sql-connector-hive-3.1.3_2.12-1.17.1.jar
  1. 配置启动 Flink

配置环境变量修改flinkconf.yaml配置文件

env.java.opts.all: "-Dfile.encoding=UTF-8"
classloader.check-leaked-classloader: false
taskmanager.numberOfTaskSlots: 3
execution.checkpointing.interval: 10s
state.backend: rocksdb
state.checkpoints.dir: hdfs://zhangfeng:9000/flink/myckp
state.savepoints.dir: hdfs://zhangfeng:9000/flink/savepoints
state.backend.incremental: true

启动 Flink

bin/start-cluster.sh
bin/sql-client.sh embedded 
set 'sql-client.execution.result-mode' = 'tableau';

Catalog

Paimon Catalog可以持久化元数据,当前支持两种类型metastore

文件系统

下面的 Flink SQL 注册并使用一个名为 paimon_catalogcatalog。元数据和表文件存放hdfs://localhost:9000/paimon/data

CREATE CATALOG paimon_catalog WITH (
'type' = 'paimon',
'warehouse' = 'hdfs://localhost:9000/paimon/data'
);

show catalogs;

Hive Catalog

我们可以直接使用 hive metastore存储 paimon 元数据。

下面是创建语句

CREATE CATALOG paimon_hive WITH (
    'type' = 'paimon',
    'metastore' = 'hive',
    'uri' = 'thrift://localhost:9083',
    'hive-conf-dir' = '/Users/zhangfeng/hadoop/apache-hive-3.1.3-bin/conf/', 
    'warehouse' = 'hdfs://localhost:9000/paimon/hive'
);
show catalogs;

创建 paimon

USE CATALOG paimon_hive;
CREATE TABLE test_paimon_01 (
  userid BIGINT,
  age INT,
  address STRING,
  regiter_dt STRING  ,
  PRIMARY KEY(userid, regiter_dt) NOT ENFORCED
) PARTITIONED BY (regiter_dt);

show tables

4. 同步MySQL 数据到 Paimon

下面我们演示怎么基于Flink CDC 快速实时同步 MySQL 表的数据到 Paimon表里。

这里首先你的MySQL 数据库开启 binlog,具体的方法网上很多,这里不在叙述。

MySQL 表:

CREATE DATABASE emp_1;
 USE emp_1;
CREATE TABLE employees_1 (
    emp_no      INT             NOT NULL,
    birth_date  DATE            NOT NULL,
    first_name  VARCHAR(14)     NOT NULL,
    last_name   VARCHAR(16)     NOT NULL,
    gender      ENUM ('M','F')  NOT NULL,    
    hire_date   DATE            NOT NULL,
    PRIMARY KEY (emp_no)
);


INSERT INTO `employees_1` VALUES  (10055,'1956-06-06','Georgy','Dredge','M','1992-04-27'),
(10056,'1961-09-01','Brendon','Bernini','F','1990-02-01'),
(10057,'1954-05-30','Ebbe','Callaway','F','1992-01-15'),
(10058,'1954-10-01','Berhard','McFarlin','M','1987-04-13'),
(10059,'1953-09-19','Alejandro','McAlpine','F','1991-06-26'),
(10060,'1961-10-15','Breannda','Billingsley','M','1987-11-02'),
(10061,'1962-10-19','Tse','Herber','M','1985-09-17'),
(10062,'1961-11-02','Anoosh','Peyn','M','1991-08-30'),
(10063,'1952-08-06','Gino','Leonhardt','F','1989-04-08'),
(10064,'1959-04-07','Udi','Jansch','M','1985-11-20'),
(10065,'1963-04-14','Satosi','Awdeh','M','1988-05-18'),
(10066,'1952-11-13','Kwee','Schusler','M','1986-02-26'),
(10067,'1953-01-07','Claudi','Stavenow','M','1987-03-04'),
(10068,'1962-11-26','Charlene','Brattka','M','1987-08-07'),
(10069,'1960-09-06','Margareta','Bierman','F','1989-11-05'),
(10070,'1955-08-20','Reuven','Garigliano','M','1985-10-14'),
(10071,'1958-01-21','Hisao','Lipner','M','1987-10-01'),
(10072,'1952-05-15','Hironoby','Sidou','F','1988-07-21'),
(10073,'1954-02-23','Shir','McClurg','M','1991-12-01'),
(10074,'1955-08-28','Mokhtar','Bernatsky','F','1990-08-13'),
(10075,'1960-03-09','Gao','Dolinsky','F','1987-03-19'),
(10076,'1952-06-13','Erez','Ritzmann','F','1985-07-09'),
(10077,'1964-04-18','Mona','Azuma','M','1990-03-02'),
(10078,'1959-12-25','Danel','Mondadori','F','1987-05-26'),
(10079,'1961-10-05','Kshitij','Gils','F','1986-03-27'),
(10080,'1957-12-03','Premal','Baek','M','1985-11-19'),
(10081,'1960-12-17','Zhongwei','Rosen','M','1986-10-30'),
(10082,'1963-09-09','Parviz','Lortz','M','1990-01-03'),
(10083,'1959-07-23','Vishv','Zockler','M','1987-03-31'),
(10084,'1960-05-25','Tuval','Kalloufi','M','1995-12-15');

在Flink sqlclient 下创建 MySQL CDC 表:

CREATE TABLE employees_source (
    database_name STRING METADATA VIRTUAL,
    table_name STRING METADATA VIRTUAL,
    emp_no int NOT NULL,
    birth_date date,
    first_name STRING,
    last_name STRING,
    gender STRING,
    hire_date date,
    PRIMARY KEY (`emp_no`) NOT ENFORCED
  ) WITH (
    'connector' = 'mysql-cdc',
    'hostname' = 'localhost',
    'port' = '3306',
    'username' = 'root',
    'password' = 'zhangfeng',
    'database-name' = 'emp_1',
    'table-name' = 'employees_1'
  );

使用Create table as select 创建Paimon表,并将数据实时同步到Paimon表里:

create table mysql_to_paimon_01 as select * from default_catalog.default_database.employees_source;

查看Job

我们这个时候可以在Flink sql-client 下查询 paimon ,看到 Paimon 表里已经有数据了。

5. Doris On Paimon

Doris 提供了 Paimon 的 catalog 支持我们可以通过这种方式,通过Doris 快速的去读 Paimon 表的数据,同时也可以通过 catalog 方式将 paimon 表的数据迁移到 Doris 表里

5.1 Doris 整合查询Paimon表

首先我们创建 Paimon catalog,有两种方式:

  1. 一种是基于 Hive metastore service
  2. 一种是基于 HDFS 文件系统
CREATE CATALOG `paimon_hdfs` PROPERTIES (
    "type" = "paimon",
    "warehouse" = "hdfs://localhost:9000/paimon/hive",
    "hadoop.username" = "hadoop"
);


CREATE CATALOG `paimon_hms` PROPERTIES (
    "type" = "paimon",
    "paimon.catalog.type" = "hms",
    "warehouse" = "hdfs://localhost:9000/paimon/hive",
    "hive.metastore.uris" = "thrift://localhost:9083"
);

创建成功之后我们通过 show catalogs方式可以看到我们创建好的 paimon catalog;

mysql> show catalogs;
+-----------+-------------+----------+-----------+-------------------------+---------------------+------------------------+
| CatalogId | CatalogName | Type     | IsCurrent | CreateTime              | LastUpdateTime      | Comment                |
+-----------+-------------+----------+-----------+-------------------------+---------------------+------------------------+
|   1308010 | hive        | hms      |           | 2023-11-17 09:42:22.872 | 2023-11-17 09:42:46 | NULL                   |
|   1326307 | hudi        | hms      |           | 2023-11-27 11:33:22.231 | 2023-11-27 11:33:35 | NULL                   |
|         0 | internal    | internal |           | UNRECORDED              | NULL                | Doris internal catalog |
|     35689 | jdbc        | jdbc     |           | 2023-11-03 12:52:24.695 | 2023-11-03 12:52:59 | NULL                   |
|     38003 | mysql       | jdbc     |           | 2023-11-07 11:46:40.006 | 2023-11-07 11:46:54 | NULL                   |
|   1329142 | paimon_hdfs | paimon   |           | 2023-11-27 14:06:13.744 | 2023-11-27 14:06:41 |                        |
|   1328144 | paimon_hms  | paimon   | yes       | 2023-11-27 14:00:32.925 | 2023-11-27 14:00:44 | NULL                   |
+-----------+-------------+----------+-----------+-------------------------+---------------------+------------------------+
7 rows in set (0.00 sec)

切换 paimon catalog,通过下面这些操作我们可以看到我们在 paimon 里创建的表

mysql> switch  paimon_hdfs;
Query OK, 0 rows affected (0.00 sec)

mysql> show databases;
+----------+
| Database |
+----------+
| default  |
+----------+
1 row in set (0.02 sec)

mysql> use default;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> show tables;
+--------------------------+
| Tables_in_default        |
+--------------------------+
| example_tbl_partition_01 |
| example_tbl_unique_01    |
| mysql_to_paimon_01       |
| test_paimon_01           |
+--------------------------+
4 rows in set (0.00 sec)

通过 Doris 查询 Paimon 表

select * from mysql_to_paimon_01;

5.2 将Paimon 表的数据导入到 Doris

我们也可以快速利用catalog 方式将 paimon 数据迁移到 Doris 里,我们可以使用 CATS方式:

create table doris_paimon_01
PROPERTIES("replication_num" = "1")  as  select * from paimon_hdfs.`default`.mysql_to_paimon_01;

注意:

1. 查询paimon的时候如果报下面的错误

org.apache.hadoop.fs.UnsupportedFileSystemException: No FileSystem for scheme "hdfs"

需要再 hdfs 需要再coresite.xml 文件中加上下面的配置:

<property>
  <name>fs.hdfs.impl</name>
  <value>org.apache.hadoop.hdfs.DistributedFileSystem</value>
  <description>The FileSystem for hdfs: uris.</description>
</property>

6. 总结

是不是使用非常简单,快快体验Doris 湖仓一体,联邦查询能力,来加速你的数据分析性能

原文地址:https://blog.csdn.net/hf200012/article/details/134707352

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_33782.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注