本文介绍: 我是阿粥,也是小z最近面了不少应届的同学数据分析岗位),颇有感触,与各位分享。简历可以润色,但要适度运用一些原则,如STAR法则,让简历逻辑更清晰,条块分明,突出自己在经历和项目中的努力,并用结果量化,这很棒。但我也看到有同学,注水要素太明显。例如在描述自己短暂的实习经历时,强调基于自己的数据分析输出建议,最终影响集团业务决策,提升某关键指标50%+。从概率上讲这是可能的,但从现实来讲又是不现实…

我是阿粥,也是小z

最近面了不少应届的同学数据分析岗位),颇有感触,与各位分享。

简历可以润色,但要适度

运用一些原则,如STAR法则,让简历逻辑更清晰,条块分明,突出自己在经历和项目中的努力,并用结果量化,这很棒。

但我也看到有同学,注水要素太明显。

例如在描述自己短暂的实习经历时,强调基于自己的数据分析输出建议,最终影响集团业务决策,提升某关键指标50%+。

从概率上讲这是可能的,但从现实来讲又是不现实的。

输出建议到落地,还有很长的路要走,落地到显著有效,有更长的路要走。

简历润色,不要脱离实事求是的内核。

承认自己不了解,没什么大不了的

不同行业,不同公司,甚至同一家公司的不同部门,对数据分析岗位的定义和侧重点都不太一样。

面试难免遇到一些超出自己认知问题

我所在的是电商行业,在问行业基础问题之前,会先问面试者“对电商行业有多少了解”。

遇到说不太了解的同学,我会换他熟悉的行业或场景来问。遇到自认为非常了解的同学,那就会有更深入的灵魂问题

怕的是自诩精通,但一问三不知。

这个阶段,数据技能非常重要

基础数据分析岗位,必然会涉及到大量的取数工作。

职场不是学校,在同等条件下,企业当然想招一个来了就能快速上手的人。

因此,常用数据工具的掌握程度非常重要。

Excel就不用多说了,它是底线。

SQL常用查询一定要了熟于心,做到指哪查哪。

Python学习不用面面俱到,Pandas库熟练运用就好。

至于Powerbi 、Tableau、SPSS、R等,属于锦上添花,在这个阶段如果不是课程有涉及到,或者心仪的岗位明确要求,不需要花额外的时间去恶补。

要有卷的心理准备

目前推到面试环节的简历,基本都是还不错的学历+两段以上中大厂相关实习经历。

为什么?

面对上百份简历,HR和面试官必须在有限时间内做出选择。如此筛选是无奈,也是相对最稳妥的一种方式。

在就业供需失衡的环境下,卷,是很难避免的。

如果已经找到了好的工作,我由衷祝贺。如果还没有找到合适的,也不要过于自我怀疑。

人生是一场马拉松,不要为了一城一地的得失而乱了方向

以上。

原文地址:https://blog.csdn.net/SeizeeveryDay/article/details/134635967

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_3383.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注