前言
PyTorch是一个开源的深度学习框架,基础教学从开始安装学起,一步一个脚印。
一、Pyorch介绍
PyTorch是一个开源的深度学习框架,用于计算机视觉和自然语言处理等应用程序的开发。它提供了一个灵活的编程模型,可以方便地进行模型定义、训练和分析。PyTorch采用了面向对象的编程风格,允许用户定义自己的神经网络层和损失函数。它还提供了丰富的工具和库,可以帮助用户实现复杂的深度学习模型。 PyTorch还可以与其他框架进行无缝集成,比如与TensorFlow进行集成,从而可以让用户获得最佳的深度学习体验。
二、Pyorch安装
由于pytorch的版本取决于使用的操作系统、Python版本和是否使用GPU
因此下面先指定如下环境:
Ubuntu20.04
python版本可以在conda构建的虚拟环境中自由设定,以python3.8.15为例
GPU选择本机对应的型号,以RTX2080TI为例支持CUDA11.6
1.pip安装
首先,确保你已经安装了Python 3.8和pip。如果你还没有安装,可以在命令行中输入以下命令来安装:
sudo apt install python3 python3-pip
pip install torch torchvision
pip install torch torchvision cudatoolkit=11.6 -f https://download.pytorch.org/whl/torch_stable.html
然后,安装cuDNN,这是Nvidia提供的一个用于加速深度学习模型训练的库:
# 下载安装包
wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64/nvidia-machine-learning-repo-ubuntu2004_1.0.0-1_amd64.deb
# 安装安装包
sudo apt install ./nvidia-machine-learning-repo-ubuntu2004_1.0.0-1_amd64.deb
# 更新源
sudo apt update
# 安装cuDNN
sudo apt install --no-install-recommends libcudnn8=8.2.0.30-1+cuda11.6 libcudnn8-dev=8.2.0.30-1+cuda11.6
import torch
print(torch.__version__)
注意:在安装过程中,如果遇到问题,可以参考PyTorch官网的安装指南:https://pytorch.org/get-started/locally/。
2.conda安装
首先,确保你已经安装了Python 3.8和Conda。如果你还没有安装,可以在命令行中输入以下命令来安装:
# 下载安装包
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
# 安装
bash Miniconda3-latest-Linux-x86_64.sh
conda install pytorch torchvision cudatoolkit=11.6 -c pytorch
然后,安装cuDNN,这是Nvidia提供的一个用于加速深度学习模型训练的库:
# 下载安装包
wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64/nvidia-machine-learning-repo-ubuntu2004_1.0.0-1_amd64.deb
# 安装安装包
sudo apt install ./nvidia-machine-learning-repo-ubuntu2004_1.0.0-1_amd64.deb
# 更新源
sudo apt update
# 安装cuDNN
sudo apt install --no-install-recommends libcudnn8=8.2.0.30-1+cuda11.6 libcudnn8-dev=8.2.0.30-1+cuda11.6
import torch
print(torch.__version__)
注意:在安装过程中,如果遇到问题,可以参考PyTorch官网的安装指南:https://pytorch.org/get-started/locally/。
3.Docker容器安装
首先,确保已经安装了Docker。如果你还没有安装,可以在命令行中输入以下命令来安装:
sudo apt install docker.io
sudo docker pull pytorch/pytorch:1.8.1-cuda11.6-cudnn8-devel
sudo docker run -it pytorch/pytorch:1.8.1-cuda11.6-cudnn8-devel
进入Docker容器后,就可以在容器中运行PyTorch的Python代码了。
注意:使用Docker容器安装PyTorch的优点是简单、快捷,但是也有一些缺点,比如容器隔离的环境与宿主机的环境存在一定差异,如果需要使用宿主机上的文件,需要使用Docker的“挂载”功能,这需要一定的Docker知识和技巧。建议在安装PyTorch前,先了解
Docker的基本操作方法。
总结
- PyTorch是一个基于Python的开源深度学习框架,可用于训练和预测深度学习模型。
- PyTorch支持多种安装方法,包括pip、Conda和Docker容器等,可以根据自己的需要选择适合的安装方法。
- 安装PyTorch后,可以在Python交互环境中验证是否安装成功,方法是输入import torch并打印torch.version。
原文地址:https://blog.csdn.net/weixin_46417939/article/details/128272407
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_34302.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!