- 论文标题:Image Segmentation Using Deep Learning:A Survey
- 作者:
- 发表日期:
- 阅读日期 :
- 研究背景:scene understanding,medical image analysis, robotic perception, video surveillance, augmented reality, and image compression
- 方法和性质:
fully convolutional pixel–labeling networks,encoder–decoder architectures, multi–scale and pyramid based approaches, recurrent networks, visual attention models, and generativemodels in adversarial settings.
- Fully convolutional networks
- Convolutional models with graphical models
- Encoder–decoder based models
- Multi–scale and pyramid network based models5) R-CNN based models (for instance segmentation)6) Dilated convolutional models and DeepLab family7) Recurrent neural network based models8) Attention–based models
- Generative models and adversarial training
- Convolutional models with active contour models
- Other models
原文地址:https://blog.csdn.net/qq_61735602/article/details/134687310
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_34330.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。