1. 论文标题:Image Segmentation Using Deep Learning:A Survey
  2. 作者
  3. 发表日期
  4. 阅读日期
  5. 研究背景scene understanding,medical image analysis, robotic perception, video surveillance, augmented reality, and image compression
  6. 方法和性质:
    fully convolutional pixellabeling networks,encoderdecoder architectures, multiscale and pyramid based approaches, recurrent networks, visual attention models, and generativemodels in adversarial settings.
  1. Fully convolutional networks
  2. Convolutional models with graphical models
  3. Encoderdecoder based models
  4. Multiscale and pyramid network based models5) R-CNN based models (for instance segmentation)6) Dilated convolutional models and DeepLab family7) Recurrent neural network based models8) Attentionbased models
  5. Generative models and adversarial training
  6. Convolutional models with active contour models
  7. Other models
    在这里插入图片描述
  1. 研究结果
  2. 创新点:
  3. 数据
  4. 结论:
  5. 挑战:
  6. 研究展望:
  7. 重要性:
  8. 写作方法

原文地址:https://blog.csdn.net/qq_61735602/article/details/134687310

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_34330.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注