当前位置: 首页互联网正文 本文介绍: 综述论文*4 论文标题:Image Segmentation Using Deep Learning:A Survey 作者: 发表日期: 阅读日期 : 研究背景:scene understanding,medical image analysis, robotic perception, video surveillance, augmented reality, and image compression 方法和性质: fully convolutional pixel–labeling networks,encoder–decoder architectures, multi–scale and pyramid based approaches, recurrent networks, visual attention models, and generativemodels in adversarial settings. Fully convolutional networks Convolutional models with graphical models Encoder–decoder based models Multi–scale and pyramid network based models5) R-CNN based models (for instance segmentation)6) Dilated convolutional models and DeepLab family7) Recurrent neural network based models8) Attention–based models Generative models and adversarial training Convolutional models with active contour models Other models 研究结果: 创新点: 数据: 结论: 挑战: 研究展望: 重要性: 写作方法: 主要讲各个方法细节,之后再了解 原文地址:https://blog.csdn.net/qq_61735602/article/details/134687310 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若转载,请注明出处:http://www.7code.cn/show_34330.html 如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除! 主题授权提示:请在后台主题设置-主题授权-激活主题的正版授权,授权购买:RiTheme官网显示所有内容声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。imagesegmentationusing 代码007普通 打赏 收藏 海报 链接