一、导入数据

1.直接赋值

在这里插入图片描述

2.读取 Excel 文件

在这里插入图片描述

3.代码示例
import pandas as pd

# 读取数据文件
def readDataFile(readPath):  # readPath: 数据文件地址文件名
    try:
        if (readPath[-4:] == ".csv"):
            dfFile = pd.read_csv(readPath, header=0, sep=",")  # 间隔符为逗号,首行为标题
            # dfFile = pd.read_csv(filePath, header=None, sep=",")  # sep: 间隔符,无标题
        elif (readPath[-4:] == ".xls") or (readPath[-5:] == ".xlsx"):  # sheet_name 默认为 0
            dfFile = pd.read_excel(readPath, header=0)  # 首行为标题
            # dfFile = pd.read_excel(filePath, header=None)  # 无标题
        elif (readPath[-4:] == ".dat"):  # sep: 间隔符,header:首行是否标题
            dfFile = pd.read_table(readPath, sep=" ", header=0)  # 间隔符为空格,首行为标题
            # dfFile = pd.read_table(filePath,sep=",",header=None) # 间隔符为逗号,无标题
        else:
            print("不支持文件格式。")
    except Exception as e:
        print("读取数据文件失败:{}".format(str(e)))
        return
    return dfFile

# 主程序
def main():

    # 读取数据文件
    readPath = "../data/toothpaste.csv"  # 数据文件地址文件名
    dfFile = readDataFile(readPath)  # 调用读取文件程序
    
    print(type(dfFile))  # 查看 dfFile 数据类型
    print(dfFile.shape)  # 查看 dfFile 形状行数,列数)
    print(dfFile.head())  # 显示 dfFile 前 5 行数

    return

if __name__ == '__main__':
    main()

二、线性规划

1.什么线性规划问题

在这里插入图片描述

2.线性规划问题如何求解
1.问题在这里插入图片描述
2.代码
import pulp  # 导入 PuLP库函数

# 1.定义一个规划问题
MyProbLP = pulp.LpProblem("LPProbDemo1", sense=pulp.LpMaximize)
'''
pulp.LpProblem 是定义问题构造函数。
"LPProbDemo1"是用户定义的问题名(用于输出信息)。
参数 sense 用来指定最小值/最大值问题,可选参数值:LpMinimize、LpMaximize 。本例 “sense=pulp.LpMaximize” 表示目标函数最大值。
'''
# 2.定义决策变量
x1 = pulp.LpVariable('x1', lowBound=0, upBound=7, cat='Continuous')
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Continuous')
x3 = pulp.LpVariable('x3', lowBound=0, upBound=7, cat='Continuous')
'''
pulp.LpVariable 是定义决策变量函数。
‘x1’ 是用户定义的变量名参数 lowBound、upBound 用来设定决策变量的下界、上界;可以不定义下界/上界,默认的下界/上界是负无穷/正无穷。本例中 x1,x2,x3 的取值区间为 [0,7]。
参数 cat 用来设定变量类型,可选参数值:‘Continuous’ 表示连续变量默认值)、’ Integer ’ 表示离散变量用于整数规划问题)、’ Binary表示0/1变量用于0/1规划问题)。
'''
# 3.设置目标函数
MyProbLP += 2 * x1 + 3 * x2 - 5 * x3
'''
添加目标函数使用 “问题名 += 目标函数式” 格式。
'''
# 4.添加约束条件
MyProbLP += (2 * x1 - 5 * x2 + x3 >= 10)  # 不等式约束
MyProbLP += (x1 + 3 * x2 + x3 <= 12)  # 不等式约束
MyProbLP += (x1 + x2 + x3 == 7)  # 等式约束
'''
添加约束条件使用 “问题名 += 约束条件表达式格式。
约束条件可以是等式约束或不等式约束,不等式约束可以是 小于等于大于等于,分别使用关键字"&gt;="、"<=“和”=="。
'''
# 5.求解
MyProbLP.solve()
print("Status:", pulp.LpStatus[MyProbLP.status])  # 输出求解状态
for v in MyProbLP.variables():
    print(v.name, "=", v.varValue)  # 输出每个变量最优
print("F(x) = ", pulp.value(MyProbLP.objective))  # 输出最优解的目标数值
'''
solve() 是求解函数。PuLP默认采用 CBC 求解器来求解优化问题,也可以调用其它的优化器来求解,如:GLPK,COIN CLP/CBC,CPLEX,和GUROBI,但需要另外安装。
'''
3.结果

在这里插入图片描述

4.求解实例

在这里插入图片描述

三、整数规划

线性规划问题的最优可能分数小数整数规划是指变量取值只能是整数的规划。
pulp.LpVariable 用来定义决策变量的函数,参数 cat 用来设定变量类型,可选参数值:‘Continuous’ 表示连续变量(默认值)、’ Integer ’ 表示离散变量(用于整数规划问题)、’ Binary表示0/1变量(用于0/1规划问题)。

1.求解示例
import pulp      # 导入 pulp 库

# 主程序
def main():

    # 模型参数设置
    """
    问题描述:
        某厂生产甲乙两种饮料,每百箱甲饮料需用原料6千克、工人10名,获利10万元;每百箱乙饮料需用原料5千克、工人20名,获利9万元。
        今工厂共有原料60千克、工人150名,又由于其他条件所限甲饮料产量不超过8百箱。
        (1)问如何安排生产计划,即两种饮料各生产多少使获利最大?
        (2)若投资0.8万元可增加原料1千克,是否应作这项投资?投资多少合理?
        (3)若不允许散箱(按整百箱生产),如何安排生产计划,即两种饮料各生产多少使获利最大?
        (4)若不允许散箱(按整百箱生产),若投资0.8万元可增加原料1千克,是否应作这项投资?投资多少合理?
    """

    # 问题 1:
    """
    问题建模:
        决策变量:
            x1:甲饮料产量(单位:百箱)
            x2:乙饮料产量(单位:百箱)
        目标函数:
            max fx = 10*x1 + 9*x2
        约束条件:
            6*x1 + 5*x2 <= 60
            10*x1 + 20*x2 <= 150            
            x1, x2 >= 0,x1 <= 8
    此外,由 x1,x2>=0 和 10*x1+20*x2<=150 可知 0<=x2<=7.5
    """
    ProbLP1 = pulp.LpProblem("ProbLP1", sense=pulp.LpMaximize)    # 定义问题 1,求最大值
    x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous')  # 定义 x1
    x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous')  # 定义 x2
    ProbLP1 += (10*x1 + 9*x2)  # 设置目标函数 f(x)
    ProbLP1 += (6*x1 + 5*x2 <= 60)  # 不等式约束
    ProbLP1 += (10*x1 + 20*x2 <= 150)  # 不等式约束
    ProbLP1.solve()
    print(ProbLP1.name)  # 输出求解状态
    print("Status :", pulp.LpStatus[ProbLP1.status])  # 输出求解状态
    for v in ProbLP1.variables():
        print(v.name, "=", v.varValue)  # 输出每个变量的最优
    print("F1(x) =", pulp.value(ProbLP1.objective))  # 输出最优解的目标函数值


    # 问题 2:
    """
    问题建模:
        决策变量:
            x1:甲饮料产量(单位:百箱)
            x2:乙饮料产量(单位:百箱)
            x3:增加投资(单位:万元)
        目标函数:
            max fx = 10*x1 + 9*x2 - x3
        约束条件:
            6*x1 + 5*x2 <= 60 + x3/0.8
            10*x1 + 20*x2 <= 150
            x1, x2, x3 >= 0,x1 <= 8
    此外,由 x1,x2>=0 和 10*x1+20*x2<=150 可知 0<=x2<=7.5
    """
    ProbLP2 = pulp.LpProblem("ProbLP2", sense=pulp.LpMaximize)    # 定义问题 2,求最大值
    x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous')  # 定义 x1
    x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous')  # 定义 x2
    x3 = pulp.LpVariable('x3', lowBound=0, cat='Continuous')  # 定义 x3
    ProbLP2 += (10*x1 + 9*x2 - x3)  # 设置目标函数 f(x)
    ProbLP2 += (6*x1 + 5*x2 - 1.25*x3 <= 60)  # 不等式约束
    ProbLP2 += (10*x1 + 20*x2 <= 150)  # 不等式约束
    ProbLP2.solve()
    print(ProbLP2.name)  # 输出求解状态
    print("Status :", pulp.LpStatus[ProbLP2.status])  # 输出求解状态
    for v in ProbLP2.variables():
        print(v.name, "=", v.varValue)  # 输出每个变量的最优
    print("F2(x) =", pulp.value(ProbLP2.objective))  # 输出最优解的目标函数值

    # 问题 3:整数规划问题
    """
    问题建模:
        决策变量:
            x1:甲饮料产量,正整数(单位:百箱)
            x2:乙饮料产量,正整数(单位:百箱)
        目标函数:
            max fx = 10*x1 + 9*x2
        约束条件:
            6*x1 + 5*x2 <= 60
            10*x1 + 20*x2 <= 150
            x1, x2 >= 0,x1 <= 8,x1, x2 为整数
    此外,由 x1,x2>=0 和 10*x1+20*x2<=150 可知 0<=x2<=7.5
    """
    ProbLP3 = pulp.LpProblem("ProbLP3", sense=pulp.LpMaximize)  # 定义问题 3,求最大值
    print(ProbLP3.name)  # 输出求解状态
    x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Integer')  # 定义 x1,变量类型整数
    x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Integer')  # 定义 x2,变量类型整数
    ProbLP3 += (10 * x1 + 9 * x2)  # 设置目标函数 f(x)
    ProbLP3 += (6 * x1 + 5 * x2 <= 60)  # 不等式约束
    ProbLP3 += (10 * x1 + 20 * x2 <= 150)  # 不等式约束
    ProbLP3.solve()
    print("Status:", pulp.LpStatus[ProbLP3.status])  # 输出求解状态
    for v in ProbLP3.variables():
        print(v.name, "=", v.varValue)  # 输出每个变量的最优
    print("F3(x) =", pulp.value(ProbLP3.objective))  # 输出最优解的目标函数值


    # 问题 4:
    """
    问题建模:
        决策变量:
            x1:甲饮料产量,正整数(单位:百箱)
            x2:乙饮料产量,正整数(单位:百箱)
            x3:增加投资(单位:万元)
        目标函数:
            max fx = 10*x1 + 9*x2 - x3
        约束条件:
            6*x1 + 5*x2 <= 60 + x3/0.8
            10*x1 + 20*x2 <= 150
            x1, x2, x3 >= 0,x1 <= 8,x1, x2 为整数
    此外,由 x1,x2>=0 和 10*x1+20*x2<=150 可知 0<=x2<=7.5
    """
    ProbLP4 = pulp.LpProblem("ProbLP4", sense=pulp.LpMaximize)  # 定义问题 4,求最大值
    print(ProbLP4.name)  # 输出求解状态
    x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Integer')  # 定义 x1,变量类型:整数
    x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Integer')  # 定义 x2,变量类型:整数
    x3 = pulp.LpVariable('x3', lowBound=0, cat='Continuous')  # 定义 x3
    ProbLP4 += (10*x1 + 9*x2 - x3)  # 设置目标函数 f(x)
    ProbLP4 += (6*x1 + 5*x2 - 1.25*x3 <= 60)  # 不等式约束
    ProbLP4 += (10*x1 + 20*x2 <= 150)  # 不等式约束
    ProbLP4.solve()
    print("Status:", pulp.LpStatus[ProbLP4.status])  # 输出求解状态
    for v in ProbLP4.variables():
        print(v.name, "=", v.varValue)  # 输出每个变量的最优值
    print("F4(x) =", pulp.value(ProbLP4.objective))  # 输出最优解的目标函数值

    return

if __name__ == '__main__':  
    main()  
2.结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、0-1规划

0-1 整数规划是一类特殊的整数规划,变量的取值只能是 0 或 1。主要用于求解互斥的决策问题、互斥的约束条件问题、固定费用问题和分派问题。

1.规划的分类建模方法

规划问题的数学模型包括决策变量、约束条件和目标函数,围绕这三个要素都可能存在互斥的情况,从而导出不同类型的0-1规划问题,其建模方法也有差别。

2.PuLP 求解 0-1 规划问题

1.案例问题描述
在这里插入图片描述
2.建模过程分析
在这里插入图片描述

3.模型求解的编程

import pulp      # 导入 pulp 库

# 主程序
def main():
    # 投资决策问题:
    # 公司现有 5个拟投资项目,根据投资额、投资收益和限制条件,问如何决策使收益最大
    """
    问题建模:
        决策变量:
            x1~x5:0/1 变量,1 表示选择第 i 个项目, 0 表示不选择第 i 个项目
        目标函数:
            max fx = 150*x1 + 210*x2 + 60*x3 + 80*x4 + 180*x5
        约束条件:
            210*x1 + 300*x2 + 100*x3 + 130*x4 + 260*x5 <= 600
            x1 + x2 + x3 = 1
            x3 + x4 <= 1
            x5 <= x1
            x1,...,x5 = 0, 1
    """
    InvestLP = pulp.LpProblem("Invest decision problem", sense=pulp.LpMaximize)  # 定义问题,求最大值
    # 参数 cat 用来设定变量类型,’ Binary ’ 表示0/1变量(用于0/1规划问题)。
    x1 = pulp.LpVariable('A', cat='Binary')  # 定义 x1,A 项目   
    x2 = pulp.LpVariable('B', cat='Binary')  # 定义 x2,B 项目
    x3 = pulp.LpVariable('C', cat='Binary')  # 定义 x3,C 项目
    x4 = pulp.LpVariable('D', cat='Binary')  # 定义 x4,D 项目
    x5 = pulp.LpVariable('E', cat='Binary')  # 定义 x5,E 项目
    InvestLP += (150*x1 + 210*x2 + 60*x3 + 80*x4 + 180*x5)  # 设置目标函数 f(x)
    InvestLP += (210*x1 + 300*x2 + 100*x3 + 130*x4 + 260*x5 <= 600)  # 不等式约束
    InvestLP += (x1 + x2 + x3 == 1)  # 等式约束
    InvestLP += (x3 + x4 <= 1)  # 不等式约束
    InvestLP += (x5 - x1 <= 0)  # 不等式约束
    InvestLP.solve()  # solve() 是求解函数,可以对求解器、求解精度进行设置。
    print(InvestLP.name)  # 输出求解状态
    print("Status youcans:", pulp.LpStatus[InvestLP.status])  # 输出求解状态
    for v in InvestLP.variables():
        print(v.name, "=", v.varValue)  # 输出每个变量的最优值
    print("Max f(x) =", pulp.value(InvestLP.objective))  # 输出最优解的目标函数值

    return

if __name__ == '__main__': 
    main()  

4.运行结果
在这里插入图片描述
结论:从 0-1 规划模型的结果可知,选择 A、C、E 项目进行投资,可以满足限定条件并获得最大收益 410万元。

五、固定费用问题

1.问题定义

在这里插入图片描述

2.案例

1.问题描述
在这里插入图片描述
2.建模分析
首先要理解生产某种服装就会发生设备租金,租金只与是否生产该产品有关,而与生产数量无关,这就是固定成本。因此本题属于固定费用问题。
有些同学下意识地认为是从 3 种产品中选择一种,但题目中并没有限定必须或只能生产一种产品,因此决策结果可以是都不生产、选择 1 种或 2 种产品、3 种都生产。
在这里插入图片描述
3.编程求解

import pulp      # 导入 pulp 库

# 主程序
def main():
    # 固定费用问题(Fixed cost problem)
    print("固定费用问题(Fixed cost problem)")
    # 问题建模:
    """
        决策变量:
            y(i) = 0, 不生产第 i 种产品
            y(i) = 1, 生产第 i 种产品            
            x(i), 生产第 i 种产品的数量, i>=0 整数
            i=1,2,3
        目标函数:
            min profit = 120x1 + 10x2+ 100x3 - 5000y1 - 2000y2 - 2000y3
        约束条件:
            5x1 + x2 + 4x3 <= 2000
            3x1 <= 300y1
            0.5x2 <= 300y2
            2x3 <= 300y3
        变量取值范围:
            0<=x1<=100, 0<=x2<=600, 0<=x3<=150, 整数变量
            y1, y2 ,y3 为 0/1 变量 
    """
    # 1. 固定费用问题(Fixed cost problem), 使用 PuLP 工具包求解
    # (1) 建立优化问题 FixedCostP1: 求最大值(LpMaximize)
    FixedCostP1 = pulp.LpProblem("Fixed_cost_problem_1", sense=pulp.LpMaximize)  # 定义问题,求最大值
    # (2) 建立变量
    x1 = pulp.LpVariable('A', cat='Binary')  # 定义 x1,0-1变量,是否生产 A 产品
    x2 = pulp.LpVariable('B', cat='Binary')  # 定义 x2,0-1变量,是否生产 B 产品
    x3 = pulp.LpVariable('C', cat='Binary')  # 定义 x3,0-1变量,是否生产 C 产品
    y1 = pulp.LpVariable('yieldA', lowBound=0, upBound=100, cat='Integer')  # 定义 y1,整型变量
    y2 = pulp.LpVariable('yieldB', lowBound=0, upBound=600, cat='Integer')  # 定义 y2,整型变量
    y3 = pulp.LpVariable('yieldC', lowBound=0, upBound=150, cat='Integer')  # 定义 y3,整型变量
    # (3) 设置目标函数
    FixedCostP1 += pulp.lpSum(-5000*x1-2000*x2-2000*x3+120*y1+10*y2+100*y3)  # 设置目标函数 f(x)
    # (4) 设置约束条件
    FixedCostP1 += (5*y1 + y2 + 4*y3 <= 2000)  # 不等式约束
    FixedCostP1 += (3*y1 - 300*x1 <= 0)  # 不等式约束
    FixedCostP1 += (0.5*y2 - 300*x2 <= 0)  # 不等式约束
    FixedCostP1 += (2*y3 - 300*x3 <= 0)  # 不等式约束
    # (5) 求解
    FixedCostP1.solve()
    # (6) 打印结果
    print(FixedCostP1.name)
    if pulp.LpStatus[FixedCostP1.status] == "Optimal":  # 获得最优解
        for v in FixedCostP1.variables():
            print(v.name, "=", v.varValue)  # 输出每个变量的最优值
        print("F(x) = ", pulp.value(FixedCostP1.objective))  # 输出最优解的目标函数值
    return

if __name__ == '__main__':
    main()

在这里插入图片描述
结论:从固定费用问题模型的求解结果可知,A、B、C 三种服装都生产,产量分别为 A/100、B/600、C/150 时获得最大利润为:24000。

4.字典格式快捷建模方法
在这里插入图片描述

import pulp  # 导入 pulp 库


# 主程序
def main():
    # 2. 问题同上,PuLP 快捷方法示例
    # (1) 建立优化问题 FixedCostP2: 求最大值(LpMaximize)
    FixedCostP2 = pulp.LpProblem("Fixed_cost_problem_2", sense=pulp.LpMaximize)  # 定义问题,求最大
    # (2) 建立变量
    types = ['A', 'B', 'C']  # 定义产品种类
    status = pulp.LpVariable.dicts("生产决策", types, cat='Binary')  # 定义 0/1 变量,是否生产该产品
    yields = pulp.LpVariable.dicts("生产数量", types, lowBound=0, upBound=600, cat='Integer')  # 定义整型变量
    # (3) 设置目标函数
    fixedCost = {'A': 5000, 'B': 2000, 'C': 2000}  # 各产品的 固定费用
    unitProfit = {'A': 120, 'B': 10, 'C': 100}  # 各产品的 单位利润
    FixedCostP2 += pulp.lpSum([(yields[i] * unitProfit[i] - status[i] * fixedCost[i]) for i in types])
    # (4) 设置约束条件
    humanHours = {'A': 5, 'B': 1, 'C': 4}  # 各产品的 单位人工工时
    machineHours = {'A': 3.0, 'B': 0.5, 'C': 2.0}  # 各产品的 单位设备工时
    maxHours = {'A': 300, 'B': 300, 'C': 300}  # 各产品的 最大设备工时
    FixedCostP2 += pulp.lpSum([humanHours[i] * yields[i] for i in types]) <= 2000  # 不等式约束
    for i in types:
        FixedCostP2 += (yields[i] * machineHours[i] - status[i] * maxHours[i] <= 0)  # 不等式约束
    # (5) 求解
    FixedCostP2.solve()
    # (6) 打印结果
    print(FixedCostP2.name)
    temple = "品种 %(type)s 的决策是:%(status)s,生产数量为:%(yields)d"
    if pulp.LpStatus[FixedCostP2.status] == "Optimal":  # 获得最优解
        for i in types:
            output = {'type': i,
                      'status': '同意' if status[i].varValue else '否决',
                      'yields': yields[i].varValue}
            print(temple % output)
        print("最大利润 = ", pulp.value(FixedCostP2.objective))  # 输出最优解的目标函数值

    return


if __name__ == '__main__':
    main()

在这里插入图片描述

六、选址问题

选址问题是指在某个区域内选择设施的位置使所需的目标达到最优。选址问题也是一种互斥的计划问题。
选址问题有四个基本要素:设施、区域距离优化目标。

1.P-中位问题

在这里插入图片描述

2.P-中心问题

在这里插入图片描述

3.集合覆盖问题

在这里插入图片描述

4.游泳接力赛的指派问题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import pulp      # 导入 pulp 库
import numpy as np

# 主程序
def main():
    # 问题建模:
    """
        决策变量:
            x(i,j) = 0, 第 i 个人不游第 j 种姿势
            x(i,j) = 1, 第 i 个人游第 j 种姿势
            i=1,4, j=1,4
        目标函数:
            min time = sum(sum(c(i,j)*x(i,j))), i=1,4, j=1,4
        约束条件:
            sum(x(i,j),j=1,4)=1, i=1,4
            sum(x(i,j),i=1,4)=1, j=1,4
        变量取值范围:
            x(i,j) = 0,1 
    """

    # 游泳比赛的指派问题 (assignment problem)
    # 1.建立优化问题 AssignLP: 求最小值(LpMinimize)
    AssignLP = pulp.LpProblem("Assignment_problem_for_swimming_relay_race", sense=pulp.LpMinimize)  # 定义问题,求最小值
    # 2. 建立变量
    rows = cols = range(0, 4)
    x = pulp.LpVariable.dicts("x", (rows, cols), cat="Binary")
    # 3. 设置目标函数
    scoreM = [[56,74,61,63],[63,69,65,71],[57,77,63,67],[55,76,62,62]]
    AssignLP += pulp.lpSum([[x[row][col]*scoreM[row][col] for row in rows] for col in cols])
    # 4. 施加约束
    for row in rows:
        AssignLP += pulp.lpSum([x[row][col] for col in cols]) == 1 # sum(x(i,j),j=1,4)=1, i=1,4
    for col in cols:
        AssignLP += pulp.lpSum([x[row][col] for row in rows]) == 1 # sum(x(i,j),i=1,4)=1, j=1,4
    # 5. 求解
    AssignLP.solve()
    # 6. 打印结果
    print(AssignLP.name)
    member = ["队员A","队员B","队员C","队员D"]
    style = ["自由泳","蛙泳","蝶泳","仰泳"]
    if pulp.LpStatus[AssignLP.status] == "Optimal":  # 获得最优解
        xValue = [v.varValue for v in AssignLP.variables()]
        # [0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]
        xOpt = np.array(xValue).reshape((4, 4))  # 将 xValue 格式转换为 4x4 矩阵
        print("最佳分配:" )
        for row in rows:
            print("{}t{} 参加项目:{}".format(xOpt[row],member[row],style[np.argmax(xOpt[row])]))
        print("预测最好成绩为:{}".format(pulp.value(AssignLP.objective)))

    return

if __name__ == '__main__':
    main()

在这里插入图片描述

5.消防站的选址问题

在这里插入图片描述
在这里插入图片描述

import pulp  # 导入 pulp 库


# 主程序
def main():
    # 问题建模:
    """
        决策变量:
            x(j) = 0, 不选择第 j 个消防站
            x(j) = 1, 选择第 j 个消防站, j=1,8
        目标函数:
            min fx = sum(x(j)), j=1,8
        约束条件:
            sum(x(j)*R(i,j),j=1,8) >=1, i=1,8
        变量取值范围:
            x(j) = 0,1
    """

    # 消防站的选址问题 (set covering problem, site selection of fire station)
    # 1.建立优化问题 SetCoverLP: 求最小值(LpMinimize)
    SetCoverLP = pulp.LpProblem("SetCover_problem_for_fire_station", sense=pulp.LpMinimize)  # 定义问题,求最小值
    # 2. 建立变量
    zones = list(range(8))  # 定义各区域
    x = pulp.LpVariable.dicts("zone", zones, cat="Binary")  # 定义 0/1 变量,是否在该区域设消防站
    # 3. 设置目标函数
    SetCoverLP += pulp.lpSum([x[j] for j in range(8)])  # 设置消防站的个数
    # 4. 施加约束
    reachable = [[1, 0, 0, 0, 0, 0, 0, 0],
                 [0, 1, 1, 0, 0, 0, 0, 0],
                 [0, 1, 1, 0, 1, 0, 0, 0],
                 [0, 0, 0, 1, 0, 0, 0, 0],
                 [0, 0, 0, 0, 1, 0, 0, 0],
                 [0, 0, 0, 0, 0, 1, 1, 0],
                 [0, 0, 0, 0, 0, 0, 1, 1],
                 [0, 0, 0, 0, 0, 0, 1, 1]]  # 参数矩阵,第 i 消防站能否在 10分钟内到达第 j 区域
    for i in range(8):
        SetCoverLP += pulp.lpSum([x[j] * reachable[j][i] for j in range(8)]) >= 1

    # 5. 求解
    SetCoverLP.solve()
    # 6. 打印结果
    print(SetCoverLP.name)
    temple = "区域 %(zone)d 的决策是:%(status)s"  # 格式化输出
    if pulp.LpStatus[SetCoverLP.status] == "Optimal":  # 获得最优解
        for i in range(8):
            output = {'zone': i + 1,  # 与问题中区域 1~8 一致
                      'status': '建站' if x[i].varValue else '--'}
            print(temple % output)
        print("需要建立 {} 个消防站。".format(pulp.value(SetCoverLP.objective)))

    return


if __name__ == '__main__':
    main()

在这里插入图片描述

原文地址:https://blog.csdn.net/m0_46692607/article/details/126784109

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_34632.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注