使用Pytorch实现线性回归

# import necessary packages
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Set necessary Hyper-parameters.
input_size = 1
output_size = 1
num_epochs = 60
learning_rate = 0.001
# Define a Toy dataset.
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168], 
                    [9.779], [6.182], [7.59], [2.167], [7.042], 
                    [10.791], [5.313], [7.997], [3.1]], dtype=np.float32)

y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573], 
                    [3.366], [2.596], [2.53], [1.221], [2.827], 
                    [3.465], [1.65], [2.904], [1.3]], dtype=np.float32)

# Confirm the data shape.
print(x_train.shape, y_train.shape)
(15, 1) (15, 1)
# Linear regression model
model = nn.Linear(input_size, output_size)
# Loss and optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, )
# Train the model
for epoch in range(num_epochs):
    # Convert numpy arrays to torch tensors
    inputs = torch.from_numpy(x_train)
    targets = torch.from_numpy(y_train)

    # Forward pass
    outputs = model(inputs)
    loss = criterion(outputs, targets)

    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Set an output counter
    if (epoch+1) % 5 == 0:
        print('Epoch [{}/{}], loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# Plot the graph
predicted = model(torch.from_numpy(x_train)).detach().numpy()
plt.plot(x_train, y_train, 'ro', label='Original data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.show()
Epoch [5/60], loss: 7.1598
Epoch [10/60], loss: 3.0717
Epoch [15/60], loss: 1.4154
Epoch [20/60], loss: 0.7443
Epoch [25/60], loss: 0.4722
Epoch [30/60], loss: 0.3618
Epoch [35/60], loss: 0.3169
Epoch [40/60], loss: 0.2985
Epoch [45/60], loss: 0.2909
Epoch [50/60], loss: 0.2876
Epoch [55/60], loss: 0.2861
Epoch [60/60], loss: 0.2853

在这里插入图片描述

# Save the model checkpoint
torch.save(model.state_dict(), 'model_param.ckpt')
torch.save(model, 'model.ckpt')

原文地址:https://blog.csdn.net/AIHUBEI/article/details/134543175

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_3605.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注